Лабораторная работа № 32

Зависимость сопротивления металлов от температуры

Цель работы: Исследовать температурную зависимость электропроводности металлов. Рассчитать температурный коэффициент сопротивления. Изучение закона Видемана-Франца.

КРАТКОЕ ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

По своим электрическим свойствам твердые тела делятся на металлы, полупроводники и диэлектрики. Эти три класса веществ характеризуются различной величиной удельного сопротивления (ρ) или удельной электрической проводимости (γ):

$$\gamma = \frac{1}{\rho} \tag{1}$$

Вещества, у которых $\rho=10^{-6}-10^{-8}$ Ом·м, относятся к металлам. Низкое удельное сопротивление металлов обусловлено высокой концентрацией свободных электронов. В диэлектриках концентрация свободных электронов мала и их удельное сопротивление $\rho=10^8-10^{13}$ Ом·м. Промежуточное положение занимают вещества, для которых удельное сопротивление $\rho=10^{-5}-10^8$ Ом·м и быстро убывает с ростом температуры. Эти вещества называются полупроводниками.

Согласно классической теории электропроводности металлов удельное сопротивление металлов ρ зависит от концентрации свободных электронов n и среднего времени свободного пробега электрона $\langle \tau \rangle$.

$$\rho = \frac{2 \cdot m}{ne^2 \tau} \tag{2}$$

где e — заряд электрона; m — масса электрона.

Концентрация свободных электронов в металле составляет примерно $10^{28} \mathrm{m}^{-3}$ т.е. того же порядка, что и число атомов в 1 m^{-3} . В проводимости принимают участие валентные электроны. Другие электроны очень прочно связаны с атомами и не становятся свободными даже при очень высоких

температурах. Из этого следует, что концентрация носителей заряда в металлах не зависит от температуры.

Сопротивление R проводника связано с удельным сопротивлением формулой:

$$R = \frac{\rho l}{S} \tag{3}$$

Здесь l и S длина и площадь поперечного сечения проводника. Среднее время свободного пробега носителей заряда при повышении температуры металлов уменьшается по закону $\tau \approx 1/T$. (Сделанное утверждение не относится к области очень низких температур, где возникает явление сверхпроводимости). Поэтому удельное сопротивление вещества, а также сопротивление металла R линейно растет с повышением температуры по закону:

$$R = R_0 \left(1 + \alpha \Delta T \right) \tag{4}$$

где R_0 — сопротивление при некоторой условной температуре T_0 (обычно при 273К), $\Delta T = (T_I - T_0)$, α — температурный коэффициент сопротивления, показывающий относительное изменение величины сопротивления при изменении температуры на один градус.

$$\alpha = \frac{1}{R_0} \cdot \frac{\Delta R}{\Delta T} \tag{5}$$

Коэффициент α для металлов почти не меняется с температурой и мал по абсолютной величине по сравнению с α для полупроводников. В таблице 1 приведены значения температурных коэффициентов сопротивления для некоторых металлов.

Таблица 1

металл	Медь	Вольфрам	Платина	Хром	Никель	Палладий	Серебро
$\alpha, K^{-1} \cdot 10^{-3}$	4,3	5,0	3,9	2,4	6,7	3,6	4,1

Металлы обладают как большой электрической проводимостью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы – свободные электроны,

которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т.е. осуществляют перенос теплоты.

Видеманом и Францем. экспериментально установлен закон, согласно которому отношение теплопроводности (σ) к удельной проводимости (γ) для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре:

$$\frac{\sigma}{\gamma} = \beta \cdot T \tag{6}$$

где β– постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение **в**

$$\beta = 3 \cdot \left(\frac{k}{e}\right)^2 \tag{7}$$

где k – постоянная Больцмана, e – заряд электрона.

Описание экспериментальной установки.

Рис. 1. Фотография лабораторной установки.

На Рис. 1 представлена фотография лабораторной установки. Установка состоит из нагревательного элемента 1, на котором установлен исследуемый образец 2. (Внимание! Будьте осторожны. Температура кожуха нагревателя может достигать 100 °C). Включение и выключение нагревателя производится при помощи выключателя 3. (Внимание! Во избежание порчи исследуемых

образцов необходимо выключить нагреватель при достижение им температуры 80 °C) Параметры исследуемого образца регистрируются при помощи мультиметров 4 – 6. На мультиметре 4 отображается температура образца, а на мультиметрах 5 и 6 отображаются сопротивления полупроводникового и металлического образцов соответственно.

Порядок выполнения работы.

- 1. Включите установку в сеть.
- 2. Запишите температуру (T_0) и значение сопротивления (R_0) исследуемого образца до начала эксперимента.
- 3. Включите нагреватель.
- 4. Записывайте показания сопротивления образца при заданных преподавателем значениях температуры. (Если скорость нарастания температуры будет слишком большая, необходимо время от времени производить выключение нагревателя. Это замедлит скорость его нагревания и повысит точность получаемых результатов.)
- 5. При достижение нагревателем температуры 80 °C выключите его. При этом он ещё некоторое время продолжит увеличивать температуру и можно будет провести ещё несколько измерений при температурах выше 80 °C.

<u>Задание 1.</u> Изучение зависимости сопротивления металлов от температуры.

Запишите параметры исследуемого образца в таблицу 2.

Таблица 2

Мате	риал –,	$1 = \dots$	M, $d = .$	MM,	$T_0 =, K,$	$R_0 =$,Ом.
№	1	2	3	4	5	6	7
t, °C							
R, Om							
T, K							
ΔΤ, Κ							

Пользуясь порядком выполнения лабораторной работы, заполните таблицу 2.

Переведите измеренные значения температуры в кельвины и занесите в таблицу.

Рассчитайте ΔТ и занесите в таблицу.

А. Графический метод.

Представим уравнение (4) в виде уравнения прямой ($y=B\cdot x+A$), где y=R, $x=\Delta T$. Тогда $A=R_0$, $B=R_0\cdot \alpha$.

Постройте график зависимости R от ΔT и аппроксимируйте его в линейную зависимость.

Рассчитайте угловой коэффициент В построенной прямой.

Рассчитайте относительную погрешность углового коэффициента δB .

Для этого выбирается экспериментальная точка, имеющая наибольшее отклонение от графика в вертикальном направлении ΔY_{max} . Тогда относительная погрешность $\delta B_Y = \left(\frac{\Delta B}{B}\right)_Y = \frac{\Delta Y_{max}}{Y_{max} - Y_{min}}$, где $(Y_{max} - Y_{min})$ — измеренные max и min значения Y (см. табл. 2).

Аналогично вычисляется относительная погрешность $\delta B_X = \left(\frac{\Delta B}{B}\right)_X = \frac{\Delta X_{max}}{X_{max} - X_{min}}$, где ΔX_{max} — наибольшее отклонение от графика в горизонтальном направлении, а $(X_{max} - X_{min})$ — измеренные max и min значения X (см. табл. 2).

Следовательно,
$$\delta B = \frac{\Delta B}{B} = \sqrt{\delta B_X^2 + \delta B_Y^2}$$
.

Из построенного графика методом экстраполяции определите $A=R_0$ и сравните полученное значение с измеренным вначале эксперимента.

Константа A определяется из графика как ордината точки с нулевой абсциссой или вычисляется по формуле $A = \langle Y \rangle - B \cdot \langle X \rangle$.

Погрешность A равна: $\Delta A = max(\Delta Y_{max}, \langle X \rangle \Delta B)$, где ΔY —максимальное отклонение экспериментальных точек от графика в вертикальном направлении, а $\Delta B = B \cdot \delta B$.

Пользуясь формулой (3) рассчитайте удельное сопротивление исследуемого материала для R_0 занесённого в таблицу и полученного из графика.

Для удельного сопротивления, полученного из графика рассчитайте погрешность по формуле $\Delta \rho = \rho \cdot \frac{\Delta A}{A}.$

Полученный результат запишите в виде $\rho = \langle \rho \rangle \pm \Delta \rho$ и сравните его со значением, полученным из таблицы.

Пользуясь формулой (5) и зная, что $B = R_0 \cdot \alpha$ рассчитайте температурный коэффициент сопротивления $\langle \alpha \rangle$ и оцените его погрешность $\Delta \alpha = \langle \alpha \rangle \cdot \delta B$.

Полученный результат запишите в виде $\alpha = \langle \alpha \rangle \pm \Delta \alpha$ и сравните его с табличным значением.

Б. Аналитический метод.

Представим уравнение (4) в виде уравнения прямой ($y = B \cdot x + A$), где y = R, $x = \Delta T$. Тогда $A = R_0$, $B = R_0 \cdot \alpha$.

1. Методом наименьших квадратов вычислите B, A и определите погрешность среднеквадратичного отклонения S_B величины B:

$$B = \frac{\langle X \cdot Y \rangle - \langle X \rangle \cdot \langle Y \rangle}{\langle X^2 \rangle - \langle X \rangle^2}$$

$$A = \langle y \rangle - B \cdot \langle x \rangle$$

$$S_B = \frac{1}{\sqrt{n-2}} \cdot \sqrt{\frac{\langle Y^2 \rangle - \langle Y \rangle^2}{\langle X^2 \rangle - \langle X \rangle^2} - B^2}$$

Определите R_0 пользуясь тем, что $A=R_0$ и сравните полученное значение с измеренным вначале эксперимента.

Пользуясь формулой (3) рассчитайте удельное сопротивление исследуемого материала для R_0 занесённого в таблицу и полученного в аналитическом методе.

Для удельного сопротивления, полученного из аналитического метода рассчитайте погрешность по формуле $\Delta \rho = \rho \cdot \frac{S_A}{A}$, где $S_A = S_B \cdot \langle X \rangle$.

Полученный результат запишите в виде $\rho = \langle \rho \rangle \pm \Delta \rho$ и сравните его со значением, полученным из таблицы.

Пользуясь формулой (5) и зная, что $B=R_0\cdot\alpha$ рассчитайте температурный коэффициент сопротивления $\langle\alpha\rangle$ и оцените его погрешность $\Delta\alpha=\frac{S_B}{R}\langle\alpha\rangle$.

Полученный результат запишите в виде $\alpha = \langle \alpha \rangle \pm \Delta \alpha$ и сравните его с табличным значением.

Задание 2. Изучение закона Видемана-Франца

Пользуясь уравнениями (1), (3), (6) и (7) получим:

$$\sigma \cdot R = {\binom{l}{\varsigma}} \cdot 3 \cdot {\binom{k}{e}}^2 \cdot T \tag{8}$$

Запишите параметры исследуемого терморезистора в таблицу 3.

Пользуясь порядком выполнения лабораторной работы, заполните таблицу 3.

Таблица 3

	Ma	Материал –,		= M,	$d = \dots MM$.		
№	1	2	3	4	5	6	7
t, °C							
T, K							
R, Om							
σ , BT/ _{M·K}							
σ·R							

При помощи таблицы 4 определите значения теплопроводности для каждой из измеренных температур и значения $\sigma \cdot R$. Запишите результаты в таблицу 3.

А. Графический метод.

Представим уравнение (8) в виде уравнения прямой (у = B·x + A), где $y = \sigma \cdot R$, x = T. Тогда $B = \binom{l}{S} \cdot 3 \cdot \binom{k}{e}^2$.

Постройте график зависимости $\sigma \cdot R$ от T и аппроксимируйте его в линейную зависимость.

Рассчитайте угловой коэффициент В построенной прямой.

Рассчитайте относительную погрешность углового коэффициента δB .

Для этого выбирается экспериментальная точка, имеющая наибольшее отклонение от графика в вертикальном направлении ΔY_{max} . Тогда относительная погрешность $\delta B_Y = \left(\frac{\Delta B}{B}\right)_Y = \frac{\Delta Y_{max}}{Y_{max} - Y_{min}}$, где $(Y_{max} - Y_{min})$ — измеренные max и min значения Y (см. табл. 3).

Аналогично вычисляется относительная погрешность $\delta B_X = \left(\frac{\Delta B}{B}\right)_X = \frac{\Delta X_{max}}{X_{max} - X_{min}}$, где ΔX_{max} — наибольшее отклонение от графика в горизонтальном направлении, а $(X_{max} - X_{min})$ — измеренные max и min значения X (см. табл. 3).

Следовательно,
$$\delta B = \frac{\Delta B}{R} = \sqrt{\delta B_X^2 + \delta B_Y^2}$$
.

Пользуясь формулами (8) и зная, что $B = \binom{l}{S} \cdot 3 \cdot \binom{k}{e}^2$ рассчитайте постоянную $\langle \beta \rangle$ и оцените его погрешность $\Delta \beta = \langle \beta \rangle \cdot \delta B$.

Полученный результат запишите в виде $\beta = \langle \beta \rangle \pm \Delta \beta$.

По формуле (7) рассчитайте теоретическое значение постоянной β и сравните с ней экспериментальное значение.

Б. Аналитический метод.

Представим уравнение (8) в виде уравнения прямой (у = $\mathbf{B} \cdot \mathbf{x} + \mathbf{A}$), где $\mathbf{y} = \mathbf{\sigma} \cdot \mathbf{R}, \, \mathbf{x} = \mathbf{T}.$ Тогда $B = {l/S} \cdot \mathbf{3} \cdot {k/e}^2.$

Методом наименьших квадратов вычислите B и определите погрешность среднеквадратичного отклонения S_B величины B:

$$B = \frac{\langle X \cdot Y \rangle - \langle X \rangle \cdot \langle Y \rangle}{\langle X^2 \rangle - \langle X \rangle^2}$$

$$S_B = \frac{1}{\sqrt{n-2}} \cdot \sqrt{\frac{\langle Y^2 \rangle - \langle Y \rangle^2}{\langle X^2 \rangle - \langle X \rangle^2} - B^2}$$

Таблица 4

					Тиолица
Т, К	σ , $^{\mathrm{BT}}/_{\mathrm{M}\cdot\mathrm{K}}$	T, K	σ , BT/ $_{\rm M}$ · K	Т, К	σ , BT/ $_{\mathrm{M}\cdot\mathrm{K}}$
280	403,03	312	400,21	344	397,68
282	402,84	314	400,05	346	397,53
284	402,66	316	399,88	348	397,38
286	402,48	318	399,72	350	397,23
288	402,30	320	399,55	352	397,09
290	402,12	322	399,39	354	396,94
292	401,94	324	399,23	356	396,80
294	401,76	326	399,07	358	396,66
296	401,58	328	398,91	360	396,52
298	401,41	330	398,75	362	396,38
300	401,23	332	398,60	364	396,24
302	401,06	334	398,44	366	396,10
304	400,89	336	398,29	368	395,96
306	400,72	338	398,13	370	395,83
308	400,55	340	397,98	372	395,70
310	400,38	342	397,83	374	395,57

Пользуясь формулами (8) и зная, что $B = \binom{l}{S} \cdot 3 \cdot \binom{k}{e}^2$ рассчитайте постоянную $\langle \beta \rangle$ и оцените его погрешность $\Delta \beta = \frac{S_B}{R} \langle \beta \rangle$.

Полученный результат запишите в виде $\beta = \langle \beta \rangle \pm \Delta \beta$.

По формуле (7) рассчитайте теоретическое значение постоянной β и сравните с ней экспериментальное значение.

Рекомендация по обработке результатов измерения аналитическим методом.

При обработке результатов измерений аналитическим методом требуется определить параметры: A, B и S_B. В формулах для расчёта этих параметров значками $\langle \ \rangle$ обозначаются средние значения параметров стоящих внутри скобочек. То есть, например, $\langle X \rangle = \frac{X_1 + X_2 + \dots + X_n}{n}$.

Для упрощения расчётов этих параметров предлагается два способа (ручной и с помощью программы Excel и её аналогов).

Ручной способ.

Начертите таблицу 5

Таблица 5

						таозинда з
	1	2	•••	n	\sum	()
X	X_1	X_2		X_n	$\sum_{i=1}^{n} X_i$	⟨X⟩
Y	Y ₁	Y_2		Y _n	$\sum_{i=1}^{i=1} Y_i$	⟨Y⟩
X^2	X^2 1	X_2^2		X_n^2	$\sum_{i=1}^{\overline{i}=1} X_i^2$	$\langle X^2 \rangle$
Y^2	Y^2_1	Y_2^2		Y _n ²	$\sum_{i=1}^{i=1} Y_i^2$	$\langle Y^2 \rangle$
X·Y	$X_1 \cdot Y_1$	$X_2 \cdot Y_2$		$X_n \cdot Y_n$	$\sum_{i=1}^{n} X_i \cdot Y_i$	$\langle X \cdot Y \rangle$

В ячейки X_1 ... X_n и Y_1 ... Y_n занесите соответствующие элементы из экспериментальных таблиц. Ячейки $X_1{}^2$... $X_n{}^2$, $Y_1{}^2$... $Y_n{}^2$ и $X_1{}\cdot Y_1$... $X_n{}\cdot Y_n$

получаются возведением ячеек X_1 ... X_n и Y_1 ... Y_n в квадрат или их перемножением.

Столбец \sum получается сложением соответствующих элементов таблицы 5. А столбец $\langle \ \rangle$ получается делением элементов столбца \sum на число слагаемых в сумме.

Способ расчёта в Excel и её аналогах

Для расчёта параметров A, B и S_B в Excel предлагается макет, изображённый на рисунке 2.

Необходимо помнить, что буквенно-числовые символы, стоящие после знака «=» типа «СЗ» это координаты соответствующих ячеек в таблице, а сам знак «=» это команда на вычисление записанных после него формул или операций.

Координаты ячеек при обработке лабораторной могут отличатся от приведённых в макете. На это влияет количество измерений, произведённых в работе.

	А	В	С	D	Е	F
1	Nº	Х	Υ	X^2	Y^2	XY
2	1	X1	Y1	=B2^2	=C2^2	=B2*C2
3	2	X2	Y2	=B3^2	=C3^2	=B3*C3
4						
5	n	Xn	Yn	=B5^2	=C5^2	=B5*C5
6						
7		<x></x>	<y></y>	<x^2></x^2>	<y^2></y^2>	<xy></xy>
8		=CP3HA4(B2:B5)	=CP3HA4(C2:C5)	=CP3HAY(D2:D5)	=CP3HAY(E2:E5)	=CP3HAY(F2:F5)
9						
10		B=	=(1			
11		A=				
12		SB=	=КОРЕНЬ((Е8-С8^			

Рис. 2. Макет заполнения таблицы в Excel.

В программах аналогичных Excel команды нахождения среднего арифметического значения, а также извлечения квадратного корня будут отличаться по записи, но принцип обработки останется таким же.

В случае обработки результатов на Excel не стоит останавливаться только на обработке описанных параметров, а стоит провести все расчёты, требуемые в аналитическом методе.

Литература.

Трофимова Т. И. Курс физики: учеб. пособие для вузов / Таисия Ивановна Трофимо- ва. — 11-е изд., стер. — М.: Издательский центр «Академия», 2006. — 560 с

Светозаров В.В. Элементарная обработка результатов измерений. М.: МИФИ, 1983

Аксенова Е.Н. «Элементарные способы оценки погрешностей результатов прямых и косвенных измерений». Учебное пособие. – М.: Изд. МИФИ, 2003, 16 с