Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

О.М. Полещук, С.В. Тумор

ОСНОВНЫЕ ПОНЯТИЯ ИНТЕГРАЛЬНОГО ИСЧИСЛЕНИЯ

Учебно-методическое пособие

Москва ИЗДАТЕЛЬСТВО МГТУ им. Н.Э. Баумана

Москва 2022

УДК 517.31

ББК 22.161.1

Издание доступно в электронном виде по адресу https://bmstu.press/catalog/item/7825/

Факультет «Космический» Кафедра «Высшая математика и физика» (К-6 МФ)

Рекомендовано Научно-методическим советом МГТУ им. Н.Э. Баумана в качестве учебно-методического пособия

Рецензент:

профессор А.В. Корольков

Полещук, О.М.

Основные понятия интегрального исчисления. Учебно-методическое пособие для самостоятельной работы студентов / О.М. Полещук, С.В. Тумор – Москва: Издательство МГТУ им. Н.Э. Баумана, 2022. – 38 с.

В учебном издании представлены учебно-методические и справочные материалы для подготовки к контрольной работе по модулю «Интегральное исчисление функций одной переменной» дисциплины «Математика». Приведены типовые варианты контрольной работы с подробным указанием способов решения всех задач.

Учебно-методическое пособие предназначено для студентов бакалавриата направления подготовки 35.03.01 «Лесное дело».

УДК 517.31 ББК 22.161.1

- © МГТУ им. Н.Э. Баумана, 2022
- © Оформление. Издательство МГТУ им. Н.Э. Баумана, 2022

ОГЛАВЛЕНИЕ

Предисловие	4
Неопределенный интеграл	6
Свойства неопределенного интеграла	8
Таблица основных неопределенных интегралов	9
Метод замены переменной	10
Метод интегрирования по частям	12
Интегрирование простейших рациональных дробей	16
Интегрирование рациональных дробей	19
Интегрирование тригонометрических функций.	Универсальная
тригонометрическая подстановка	21
ПРИМЕР РЕШЕНИЯ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНО	ОЙ РАБОТЫ 25
ВАРИАНТЫ ЗАДАНИЙ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ	31
Вопросы для самоконтроля	37
Литература	38

Предисловие

Учебно-методическое пособие является учебным изданием, содержащим учебно-методические и справочные материалы для подготовки к контрольной работе по модулю «Интегральное исчисление функций одной переменной» дисциплины «Математика».

Для удобства ориентирования в пособии составлено оглавление. В начале приводятся базовые теоретические сведения о неопределенном интеграле, даются свойства неопределенных таблица интегралов основных неопределенных интегралов. Далее рассматривается метод замены переменной в неопределенном интеграле. Затем идет метод интегрирования по частям. После приводятся примеры интегрирования простейших рациональных дробей и общий алгоритм интегрирования рациональных дробей. Рассматриваются интегралы от тригонометрических функций с использованием универсальной тригонометрической подстановки для их вычисления и без нее. Каждый из вышеизложенных методов интегрирования продемонстрирован на конкретных примерах. После основных теоретических сведений приведен пример решения типового варианта контрольной работы по модулю «Интегральное исчисление функций одной переменной» и варианты заданий контрольной работы. Завершают издание вопросы для самоконтроля и список рекомендуемой литературы.

Ключевые слова: первообразная, неопределенный интеграл, таблица неопределенных интегралов, замена переменной в неопределенном интеграле, интегрирование по частям в неопределенном интеграле, интегрирование рациональных дробей, универсальная тригонометрическая подстановка.

Учебно-методическое пособие предназначено для бакалавров направления подготовки: 35.03.01 «Лесное дело».

Цель издания — оказание помощи студентам при подготовке к контрольной работе по модулю «Интегральное исчисление функций одной переменной» дисциплины «Математика».

Проработав учебно-методическое пособие, студенты смогут:

- применять свойства интегралов на практике, в том числе при решении задач профессионального поля деятельности;
- опираясь на теоретические положения и суть решаемой задачи, вычислять неопределенные интегралы различными способами;
- применять приобретенные навыки работы с интегралами для моделирования профессиональных задач;
- опираясь на физический смысл интеграла, решать задачи профессионального поля деятельности;
- применять полученные знания об интегралах для решения задач с прикладным содержанием.

Для изучения модуля «Интегральное исчисление функций одной переменной» дисциплины «Математика» необходимы знания, полученные при изучении «школьного» курса математики и модуля «Дифференциальное исчисление функций одной переменной» дисциплины «Математика».

Теоретические и практические задания, изложенные в данном пособии, будут способствовать овладению студентами компетенциями, предусмотренными образовательной программой. Проработка учебнометодического пособия позволит студентам:

ЗНАТЬ

- основные понятия, законы и методы математических и естественных наук, необходимые для решения типовых профессиональных задач.

УМЕТЬ

- использовать основные математические и естественнонаучные приемы решения типовых профессиональных задач.

Неопределенный интеграл

Основной задачей дифференциального исчисления является нахождение производной f'(x) по известной функции f(x). В интегральном исчислении решается обратная задача — найти функцию F(x) по известной производной F'(x) = f(x). Искомая функция F(x) называется первообразной функции f(x).

Первообразной функции f(x) на интервале (a;b) называют такую функцию F(x), что для любого $x \in (a;b)$ выполняется равенство:

$$F'(x) = f(x)$$
.

Пример.

Пусть $f(x) = x^3$, тогда ее первообразная $F(x) = \frac{x^4}{4}$, так как

$$F'(x) = \left(\frac{x^4}{4}\right)' = x^3 = f(x).$$

Стоит отметить, что первообразными будут также являться функции

$$F(x) = \frac{x^4}{4} + C$$
, C – константа, поскольку $F'(x) = \left(\frac{x^4}{4} + C\right)' = x^3 = f(x)$.

Теорема. Множество всех первообразных для f(x) задается формулой F(x) + C, C – константа, если функция F(x) является первообразной функции f(x) на интервале (a;b).

Неопределенным интегралом от функции f(x) называют множество всех первообразных функций F(x) + C. Обозначают неопределенный интеграл символом $\int f(x) dx$.

То есть

$$\int f(x)dx = F(x) + C.$$

При этом f(x) называют подынтегральной функцией, f(x)dx — подынтегральным выражением, x — переменной интегрирования, \int — знаком неопределенного интеграла.

Интегрирование функции — операция нахождения неопределенного интеграла от этой функции.

Поскольку графиком функции y = F(x) является некоторая кривая на плоскости, то геометрически неопределенный интеграл y = F(x) + C задает семейство «параллельных» кривых. График каждой из этих кривых называют **интегральной кривой** (рис.1).

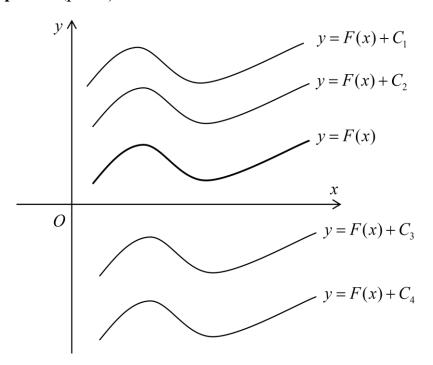


Рис. 1. Пример семейства интегральных кривых

Неопределенный интеграл существует не для всякой функции.

Теорема. Всякая непрерывная на (a;b) функция имеет первообразную на этом промежутке, а, следовательно, и неопределенный интеграл.

Свойства неопределенного интеграла

Свойство 1.
$$\left(\int f(x)dx\right)' = f(x), \ d\left(\int f(x)dx\right) = f(x)dx.$$

Пример.

$$\left(\int \sin x dx\right)' = \sin x.$$

Благодаря этому свойству можно проверить правильность интегрирования с помощью дифференцирования. Например:

$$\int (x+3)dx = \frac{x^2}{2} + 3x + C$$
 верно, поскольку $\left(\frac{x^2}{2} + 3x + C\right)' = x + 3$.

Свойство 2.
$$\int dF(x) = F(x) + C.$$

Пример.

$$\int d(\ln x) = \ln x + C.$$

Свойство 3.
$$\int b \cdot f(x) dx = b \cdot \int f(x) dx, \text{ где } b \neq 0 \text{ константа.}$$

Пример.

$$\int 5x^4 dx = 5 \cdot \int x^4 dx = 5 \cdot \frac{x^5}{5} + C = x^5 + C.$$

Свойство 4.
$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$$

Пример.

$$\int \frac{x^5 + 5}{x} dx = \int \frac{x^5}{x} dx + \int \frac{5}{x} dx = \int x^4 dx + 5 \int \frac{1}{x} dx = \frac{x^5}{5} + 5 \ln|x| + C.$$

Свойство 5. Если $\int f(x)dx = F(x) + C$, то $\int f(u)du = F(u) + C$, где $u = \varphi(x)$ — некоторая произвольная функция, имеющая непрерывную производную.

$$\int \cos 3x \ d(\cos 3x) = |u = \cos 3x| = \int u d(u) = \frac{u^2}{2} + C = \frac{\cos^2 3x}{2} + C.$$

Таблица основных неопределенных интегралов

$$1. \int 0 dx = C;$$

$$2. \int 1dx = \int dx = x + C;$$

3.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, \ n \neq -1;$$

$$4. \int_{-x}^{1} dx = \ln|x| + C;$$

$$5. \int a^x dx = \frac{a^x}{\ln a} + C;$$

$$6. \int e^x dx = e^x + C;$$

$$7. \int \sin x dx = -\cos x + C;$$

$$8. \int \cos x dx = \sin x + C;$$

9.
$$\int \frac{1}{\cos^2 x} dx = \operatorname{tg} x + C;$$

10.
$$\int \frac{1}{\sin^2 x} dx = -\cot x + C;$$

11.
$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + C;$$

12.
$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C;$$

13. «Длинный» логарифм:

$$\int \frac{1}{\sqrt{x^2 \pm a}} dx = \ln \left| x + \sqrt{x^2 \pm a} \right| + C;$$

14. «Высокий» логарифм:

$$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C;$$

Чтобы проверить правильность приведенных формул, достаточно убедиться в том, что производные от их правых частей дают соответствующие подынтегральные функции, стоящие в левых частях.

Пример.

$$\int \left(3\sqrt{x} + 2e^x\right) dx = 3\int \sqrt{x} dx + 2\int e^x dx = 3\int x^{\frac{1}{2}} dx + 2e^x = 3\cdot \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 2e^x + C = 2x^{\frac{3}{2}} + 2e^x + C.$$

Пример.

$$\int \left(\frac{4}{\sqrt{16-16x^2}} - 7\sin x\right) dx = 4\int \frac{dx}{4\sqrt{1-x^2}} - 7\int \sin x \, dx =$$

$$= \arcsin x + 7\cos x + C.$$

Пример.

$$\int \cot^2 x \, dx = \int \frac{\cos^2 x}{\sin^2 x} \, dx = \int \frac{1 - \sin^2 x}{\sin^2 x} \, dx = \int \frac{1}{\sin^2 x} \, dx - \int dx =$$

$$= -\cot x - x + C.$$

При вычислении неопределенного интеграла пользуются тождественными преобразованиями подынтегральной функции и свойствами неопределенного интеграла, чтобы свести исходный интеграл к табличному интегралу. Такой метод называется методом непосредственного интегрирования. Но он работает далеко не всегда, поэтому приходится прибегать к другим способам вычисления неопределенного интеграла.

Метод замены переменной

Метод замены переменной состоит в ведении новой переменной интегрирования. При этом исходный интеграл приводится к новому интегралу, который является табличным или сводится к табличному. Существует не так много универсальных замен, как правило, замена подбирается, исходя из

данного конкретно интеграла. Умение правильно выбрать новую переменную интегрирования приходит с практикой.

Чтобы вычислить интеграл $\int f(x)dx$, сделаем замену $x = \varphi(t)$, где $\varphi(t)$ – имеющая непрерывную производную функция.

Тогда $dx = \varphi'(t)dt$ и на основании свойства 5 неопределенного интеграла окончательно получаем формулу замены переменной в неопределенном интеграле:

$$\int f(x)dx = \int f(\varphi(t)) \cdot \varphi'(t)dt.$$

После вычисления интеграла в правой части следует сделать обратную замену, чтобы от новой переменной t вернуться к старой переменной x.

Иногда замену подбирают в виде $t=\varphi(x)$, тогда $\int f(\varphi(x))\cdot\varphi'(x)dx = \int f(t)dt.$ То есть применяют формулу замены переменной справа налево.

Пример.

$$\int (3x+10)^5 dx = \begin{vmatrix} t = 3x+10, \\ dt = d(3x+10) = \\ = (3x+10)' dx = 3dx, \end{vmatrix} = \int t^5 \cdot \frac{dt}{3} = \frac{1}{3} \int t^5 dt = \frac{1}{3} \cdot \frac{t^6}{6} + C = \frac{t^6}{18} + C = \frac{(3x+10)^6}{18} + C.$$

$$\int e^{\frac{x}{2}} dx = \begin{vmatrix} t = \frac{x}{2}, \\ dt = d\left(\frac{x}{2}\right) = \left(\frac{x}{2}\right)' dx; \ dt = \frac{dx}{2}, \\ dx = 2dt. \end{vmatrix} = \int e^{t} \cdot 2dt = 2\int e^{t} dt = 2e^{t} + C = 2e^{\frac{x}{2}} + C.$$

Пример.

$$\int \sin 4x dx = \begin{vmatrix} t = 4x, \\ dt = d(4x) = \\ = (4x)' dx = 4 dx, \\ dx = \frac{dt}{4}. \end{vmatrix} = \int \sin t \cdot \frac{dt}{4} = \frac{1}{4} \int \sin t \, dt = -\frac{\cos t}{4} + C =$$
$$= -\frac{\cos 4x}{4} + C.$$

Пример.

$$\int \frac{x^2 dx}{\sqrt{x-1}} = \begin{vmatrix} t = \sqrt{x-1}; \ t^2 = x-1 \\ x = (t^2+1) \\ d(t^2) = d(x-1) \\ 2tdt = dx \end{vmatrix} = \int \frac{(t^2+1)^2 \cdot 2tdt}{t} = 2\int (t^2+1)^2 dt = \int \frac{(t^2+1)^2 \cdot 2tdt}{t} = \int \frac{(t^2+1)^2$$

$$=2\int (t^4+2t^2+1)dt=2\left(\frac{t^5}{5}+\frac{2t^3}{3}+t\right)+C=\frac{2\left(\sqrt{x-1}\right)^5}{5}+\frac{4\left(\sqrt{x-1}\right)^3}{3}+2\sqrt{x-1}+C.$$

Пример.

$$\int \frac{\sqrt{1 - x^2} \, dx}{x^2} = \begin{vmatrix} x = \sin t; \ t = \arcsin x \\ dx = \cos t \ dt \end{vmatrix} = \int \frac{\sqrt{1 - \sin^2 t}}{\sin^2 t} \cdot \cos t \ dt = \int \frac{\cos t}{\sin^2 t} \cdot \cos t \ dt = \int \frac{\cos t}{\sin^2 t} \cdot \cos t \ dt = \int \frac{\cos^2 t}{\sin^2 t} \, dt = \int \frac{1 - \sin^2 t}{\sin^2 t} \, dt = \int \frac{1}{\sin^2 t} \, dt - \int dt = -\cot t + C = \int \frac{\cos^2 t}{\sin^2 t} \, dt = \int \frac{1 - \sin^2 t}{\sin^2 t}$$

Метод интегрирования по частям

Пусть даны две функции u = u(x) и v = v(x), которые имеют непрерывные производные. Тогда d(uv) = udv + vdu. Проинтегрировав это равенство, получим

$$\int udv = uv - \int vdu.$$

Полученную формулу называют формулой интегрирования по частям. Данная формула в некоторых случаях позволяет свести «сложный» исходный интеграл $\int u dv$ к более простому интегралу $\int v du$.

Метод интегрирования по частям состоит в следующем:

- 1. Подынтегральное выражение представляем в виде произведения двух множителей u и dv;
 - 2. Находим *du* и *v*;
 - 3. Применяем формулу интегрирования по частям.

Иногда формулу приходится использовать несколько раз.

Некоторые типы интегралов, вычисляемые методом интегрирования по частям:

Тип 1. Интегралы, имеющие вид: $\int P(x)e^{kx}dx; \int P(x)\sin kx \ dx; \int P(x)\cos kx \ dx, \quad \text{где} \quad P(x) \quad - \quad \text{это} \quad \text{некоторый}$ многочлен, k — константа. Полагаем u=P(x), тогда dv это все оставшиеся множители.

Пример.

$$\int (x+1)e^{2x}dx = \begin{vmatrix} u = x+1, & du = dx \\ dv = e^{2x}dx, & \int dv = \int e^{2x}dx \Rightarrow \\ \Rightarrow v = \frac{e^{2x}}{2} \end{vmatrix} = (x+1) \cdot \frac{e^{2x}}{2} - \int \frac{e^{2x}}{2} = \frac{1}{2}(x+1)e^{2x} - \frac{e^{2x}}{4} + C.$$

$$\int x \sin 2x \, dx = \begin{vmatrix} u = x, & du = dx, & dv = \sin 2x \, dx, \\ \int dv = \int \sin 2x \, dx \Rightarrow v = -\frac{\cos 2x}{2} \end{vmatrix} = -x \cdot \frac{\cos 2x}{2} - \int \left(-\frac{\cos 2x}{2}\right) dx = 0$$

$$= -\frac{x\cos 2x}{2} + \frac{1}{2}\int \cos 2x \, dx = -\frac{x\cos 2x}{2} + \frac{\sin 2x}{4} + C.$$

Пример.

$$\int x^{2} \cos 3x \, dx = \begin{vmatrix} u = x^{2}, \, du = 2x \, dx \\ dv = \cos 3x \, dx, \\ \int dv = \int \cos 3x \, dx \Rightarrow \end{vmatrix} = x^{2} \cdot \frac{\sin 3x}{3} - \int \frac{\sin 3x}{3} \cdot 2x \, dx =$$

$$\Rightarrow v = \frac{\sin 3x}{3}$$

$$= \frac{x^{2} \sin 3x}{3} - \frac{2}{3} \int x \sin 3x \, dx = \begin{vmatrix} u = x, \, du = dx \\ dv = \sin 3x \, dx, \\ dv = \int \sin 3x \, dx \Rightarrow \end{vmatrix} =$$

$$\Rightarrow v = -\frac{\cos 3x}{3}$$

$$= \frac{x^{2} \sin 3x}{3} - \frac{2}{3} \left(\frac{-x \cos 3x}{3} + \int \frac{\cos 3x}{3} \, dx \right) = \frac{x^{2} \sin 3x}{3} + \frac{2x \cos 3x}{3} - \frac{2 \sin 3x}{27} + C.$$

В данном примере интегрирование по частям мы применили дважды.

Отметим, что при вычислении $\int dv$, константу C можно положить равной нулю.

Тип 2. Интегралы, имеющие вид: $\int P(x) \arcsin x \, dx$; $\int P(x) \arccos x \, dx$; $\int P(x) \arcsin x \, dx$; $\int P(x) \arccos x \, dx$; $\int P(x) \arccos x \, dx$; $\int P(x) \arcsin x \, dx$; $\int P(x) \sin x \, dx$

$$\int \ln^2 x \, dx = \begin{vmatrix} u = \ln^2 x, \, du = \frac{2\ln x}{x} \, dx \\ dv = dx, \, v = x \end{vmatrix} = x \cdot \ln^2 x - \int x \cdot \frac{2\ln x}{x} \, dx =$$

$$= x \cdot \ln^2 x - 2 \int \ln x \, dx = \begin{vmatrix} u = \ln x, \, du = \frac{1}{x} \, dx \\ dv = dx, \, v = x \end{vmatrix} = x \cdot \ln^2 x - 2 \left(x \cdot \ln x - \int x \cdot \frac{1}{x} \, dx \right) =$$

$$= x \cdot \ln^2 x - 2x \cdot \ln x + 2x + C.$$

Пример.

$$\int \operatorname{arctg} x \, dx = \begin{vmatrix} u = \operatorname{arctg} x, \, du = \frac{1}{1+x^2} \, dx \\ dv = dx, \, v = x \end{vmatrix} = x \cdot \operatorname{arctg} x - \int \frac{x}{1+x^2} \, dx;$$

Вычислим отдельно $\int \frac{x}{1+x^2} dx$.

$$\int \frac{x}{1+x^2} dx = \begin{vmatrix} t = 1 + x^2, & dt = 2x dx, \\ dx = \frac{dt}{2x} \end{vmatrix} = \int \frac{x}{t} \cdot \frac{dt}{2x} = \frac{1}{2} \int \frac{dt}{t} = \frac{\ln t}{2} + C_1 = \frac{\ln(1+x^2)}{2} + C_1.$$

$$\Rightarrow x \cdot \arctan x - \int \frac{x}{1+x^2} dx = x \cdot \arctan x - \frac{\ln(1+x^2)}{2} + C.$$

В данном примере помимо формулы интегрирования по частям был использован метод замены переменной.

Тип 3. Интегралы, имеющие вид: $\int e^{ax} \cdot \sin bx \ dx$; $\int e^{ax} \cdot \cos bx \ dx$, где P(x) – это некоторый многочлен, a и b – константы. Полагаем $u = e^{ax}$, тогда dv это все оставшиеся множители.

$$\int e^{x} \cos x \, dx = \begin{vmatrix} u = e^{x}, \, du = e^{x} \, dx \\ dv = \cos x \, dx, \\ \int dv = \int \cos x \, dx \Rightarrow \end{vmatrix} = e^{x} \sin x - \int e^{x} \sin x \, dx =$$

$$\Rightarrow v = \sin x$$

$$= \begin{vmatrix} u = e^{x}, \, du = e^{x} \, dx \\ dv = \sin x \, dx, \\ \int dv = \int \sin x \, dx \Rightarrow \end{vmatrix} = e^{x} \sin x - \left(-e^{x} \cos x - \int \left(-e^{x} \cos x \right) dx \right) =$$

$$\Rightarrow v = -\cos x$$

$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx \Rightarrow$$

$$\Rightarrow \int e^{x} \cos x \, dx = e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx + C,$$

Таким образом, исходный интеграл $\int e^x \cos x \ dx$ свелся к самому себе. Введем обозначение $I = \int e^x \cos x \ dx$, тогда

$$I = e^{x} \sin x + e^{x} \cos x - I + C$$

$$2I = e^{x} \sin x + e^{x} \cos x + C$$

$$I = \frac{e^{x} \sin x + e^{x} \cos x}{2} + C$$

$$\int e^{x} \cos x \, dx = \frac{e^{x} \left(\sin x + \cos x\right)}{2} + C.$$

Константа C неявно присутствует уже после первого применения формулы интегрирования по частям, просто ее там обычно не пишут. Поэтому мы и записали ее в конце.

Интегрирование простейших рациональных дробей

Покажем на примерах как находить интегралы от простейших рациональных дробей.

1.
$$\int \frac{5}{x-4} dx = \begin{vmatrix} t = x - 4, \\ dt = dx \end{vmatrix} = 5 \int \frac{dt}{t} = 5 \ln|t| + C = 5 \ln|x - 4| + C.$$

2.
$$\int \frac{3}{(x+4)^3} dx = \begin{vmatrix} t = x+4, \\ dt = dx \end{vmatrix} = 3\int \frac{dt}{t^3} = 3 \cdot \frac{t^{-2}}{-2} + C = -\frac{3}{2} \cdot \frac{1}{(x+4)^2} + C.$$

3. Найти интеграл
$$\int \frac{2x+1}{x^2+4x+5} dx$$
.

Выделим в знаменателе полный квадрат:

$$\int \frac{2x+1}{x^2+4x+5} dx = \int \frac{2x+1}{\left(x^2+4x+4\right)+1} dx = \int \frac{2x+1}{\left(x+2\right)^2+1} dx.$$

Далее в полученном интеграле делаем замену t = x + 2.

$$\int \frac{2x+1}{(x+2)^2+1} dx = \begin{vmatrix} t = x+2, & x = t-2 \\ dt = dx \end{vmatrix} = \int \frac{2(t-2)+1}{t^2+1} dt = \int \frac{2t-3}{t^2+1} dt =$$

$$= 2\int \frac{t}{t^2+1} dt - 3\int \frac{dt}{t^2+1} = \ln(t^2+1) - 3\arctan t + C =$$

$$= \ln(x^2+4x+5) - 3\arctan(x+2) + C.$$

4. Найти интеграл $\int \frac{dx}{\left(x^2+1\right)^3}$.

Интегралы вида $\int \frac{Mx+N}{\left(x^2+px+q\right)^k} dx$ ($k \ge 2$, знаменатель не имеет

действительных корней) заменой $x + \frac{p}{2} = t$ сводятся к сумме двух интегралов:

$$M\int \frac{t}{\left(t^2+a^2\right)^k}dt + \left(N - \frac{Mp}{2}\right) \cdot \int \frac{dt}{\left(t^2+a^2\right)^k}, \quad a = q - \frac{p^2}{4}.$$

Первый интеграл легко вычисляется с помощью замены $z = t^2 + a^2$.

$$\int \frac{t}{\left(t^2 + a^2\right)^k} dt = \begin{vmatrix} z = t^2 + a^2, \\ dz = 2t dt, dt = \frac{dz}{2t} \end{vmatrix} = \int \frac{t}{z^k} \cdot \frac{dz}{2t} = \frac{1}{2} \cdot \int \frac{dz}{z^k} = \frac{1}{2} \cdot \frac{z^{-k+1}}{-k+1} + C = \frac{1}{2(1-k)(t^2 + a^2)^{k-1}} + C.$$

Обозначим второй интеграл за J_k и вычислим его:

$$\begin{split} J_{k} &= \int \frac{dt}{\left(t^{2} + a^{2}\right)^{k}} = \frac{1}{a^{2}} \int \frac{\left(t^{2} + a^{2}\right) - t^{2}}{\left(t^{2} + a^{2}\right)^{k}} dt = \frac{1}{a^{2}} \left(\int \frac{dt}{\left(t^{2} + a^{2}\right)^{k-1}} - \int \frac{t^{2}dt}{\left(t^{2} + a^{2}\right)^{k}}\right) = \\ &= \frac{1}{a^{2}} \left(J_{k-1} - \int \frac{t^{2}dt}{\left(t^{2} + a^{2}\right)^{k}}\right). \end{split}$$

К интегралу $\int \frac{t^2 dt}{\left(t^2 + a^2\right)^k}$ применим интегрирование по частям.

$$\int \frac{t^2 dt}{\left(t^2 + a^2\right)^k} = \begin{vmatrix} u = t; & du = dt \\ dv = \frac{t}{\left(t^2 + a^2\right)^k} \\ v = \frac{1}{2(1 - k)\left(t^2 + a^2\right)^{k-1}} \end{vmatrix} = \frac{t}{2(1 - k)\left(t^2 + a^2\right)^{k-1}} - \int \frac{dt}{2(1 - k)\left(t^2 + a^2\right)^{k-1}} = \frac{t}{2(1 - k)\left(t^2 + a^2\right)^{k-1}} - \frac{1}{2(1 - k)} \cdot J_{k-1}.$$

Подставим найденное значение в интеграл J_k .

$$\begin{split} J_k &= \frac{1}{a^2} \Biggl(J_{k-1} - \frac{t}{2(1-k) \Bigl(t^2 + a^2 \Bigr)^{k-1}} + \frac{1}{2(1-k)} \cdot J_{k-1} \Biggr) \Longrightarrow \\ & \Longrightarrow J_k = \frac{1}{a^2} \Biggl(\frac{2k-3}{2k-2} J_{k-1} + \frac{t}{2(k-1) \bigl(t^2 + a^2 \bigr)^{k-1}} \Biggr). \end{split}$$

Получили формулу для вычисления интеграла J_k при любом натуральном k>1.

Пример.

Найти интеграл
$$J_3 = \int \frac{dt}{\left(t^2 + 1\right)^3}$$
.

Воспользуемся формулой для J_k . В нашем случае $a=1,\ k=3.$

$$\begin{split} J_1 &= \int \frac{dt}{t^2 + 1} = \operatorname{arctg} \ t + C, \\ J_2 &= \int \frac{dt}{\left(t^2 + 1\right)^2} = \frac{2 \cdot 2 - 3}{2 \cdot 2 - 2} J_1 + \frac{t}{2 \cdot (2 - 1)(t^2 + 1)} = \frac{1}{2} \operatorname{arctg} \ t + \frac{t}{2(t^2 + 1)} + C, \\ J_3 &= \frac{3}{4} J_2 + \frac{t}{4(t^2 + 1)^2} = \frac{t}{4(t^2 + 1)^2} + \frac{3}{4} \left(\frac{1}{2} \operatorname{arctg} \ t + \frac{t}{2(t^2 + 1)}\right) + C. \end{split}$$

Интегрирование рациональных дробей

Сформулируем порядок действий при интегрировании рациональных дробей:

- 1. Если подынтегральное выражение представляет собой неправильную дробь, то нужно разделить числитель на знаменатель, чтобы представить дробь в виде суммы многочлена и правильной дроби;
- 2. Разложить знаменатель полученной правильной дроби на множители и представить дробь в виде суммы простейших рациональных дробей с неопределенными коэффициентами;
- 3. Привести сумму простейших дробей к общему знаменателю и приравнять многочлен в числителе полученной дроби к многочлену в числителе правильной дроби;
- 4. Раскрыть скобки и сгруппировать слагаемые при одинаковых степенях x в обеих частях равенства;
- 5. Составить и решить систему линейных уравнений, чтобы найти неопределенные коэффициенты;
 - 6. Проинтегрировать полученный многочлен и сумму дробей.

Пример.

Найти интеграл
$$\int \frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} dx.$$

1. Поскольку дробь неправильная, делим числитель на знаменатель.

Тогда исходная дробь примет вид:

$$\frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} = x - 2 + \frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2}.$$

2. Раскладываем правильную дробь на простейшие дроби:

$$\frac{4x^3 + 4x^2 + 4x + 4}{x^4 + 2x^3 + 2x^2} = \frac{4x^3 + 4x^2 + 4x + 4}{x^2(x^2 + 2x + 2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 2x + 2}.$$

3. Приводим сумму дробей к общему знаменателю:

$$\frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 2x + 2} = \frac{Ax(x^2 + 2x + 2) + B(x^2 + 2x + 2) + (Cx + D)x^2}{x^2(x^2 + 2x + 2)},$$

Приравниваем числитель полученной дроби к числителю правильной дроби:

$$Ax(x^2 + 2x + 2) + B(x^2 + 2x + 2) + (Cx + D)x^2 = 4x^3 + 4x^2 + 4x + 4$$

4. Раскрываем скобки в левой части равенства и группируем слагаемые при одинаковых степенях x:

$$Ax^{3} + 2Ax^{2} + 2Ax + Bx^{2} + 2Bx + 2B + Cx^{3} + Dx^{2} = 4x^{3} + 4x^{2} + 4x + 4,$$

$$(A+C)x^{3} + (2A+B+D)x^{2} + (2A+2B)x + 2B = 4x^{3} + 4x^{2} + 4x + 4.$$

5. Составляем систему линейный уравнений. Для этого приравниваем слагаемые при одинаковых степенях *х* в левой и правой частях выражения:

$$\begin{vmatrix} x^{3} \\ x^{2} \\ 2A + B + D = 4, \\ x^{1} \\ 2A + 2B = 4, \\ x^{0} \\ 2B = 4. \end{vmatrix}$$

Решая систему, находим: B = 2, A = 0, C = 4, D = 2.

Подставим найденные коэффициенты:

$$\frac{4x^3 + 4x^2 + 4x + 4}{x^2(x^2 + 2x + 2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 2x + 2} = \frac{2}{x^2} + \frac{4x + 2}{x^2 + 2x + 2}.$$

Тогда исходная дробь примет вид:

$$\frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} = x - 2 + \frac{2}{x^2} + \frac{4x + 2}{x^2 + 2x + 2}.$$

6. Проинтегрируем полученный многочлен и сумму дробей:

$$\int \frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} dx = \int \left(x - 2 + \frac{2}{x^2} + \frac{4x + 2}{x^2 + 2x + 2}\right) dx =$$

$$= \frac{x^2}{2} - 2x - \frac{2}{x} + \int \frac{4x + 2}{x^2 + 2x + 2} dx.$$

Вычислим $\int \frac{4x+2}{x^2+2x+2} dx$ отдельно.

$$\int \frac{4x+2}{x^2+2x+2} dx = \int \frac{4x+2}{\left(x^2+2x+1\right)+1} dx = \int \frac{4x+2}{\left(x+1\right)^2+1} dx =$$

$$= \begin{vmatrix} t = x+1, & dt = dx \\ x = t-1 \end{vmatrix} = \int \frac{4(t-1)+2}{t^2+1} dt = \int \frac{4t-2}{t^2+1} dt = 4\int \frac{t}{t^2+1} dt - 2\int \frac{dt}{t^2+1} =$$

$$= 2 \cdot \ln(t^2+1) - 2 \operatorname{arctg} t + C = 2 \cdot \ln(x^2+2x+2) - 2 \operatorname{arctg} (x+1) + C.$$

Окончательно получаем:

$$\int \frac{x^5 + 2x^3 + 4x + 4}{x^4 + 2x^3 + 2x^2} dx = \int \left(x - 2 + \frac{2}{x^2} + \frac{4x + 2}{x^2 + 2x + 2}\right) dx =$$

$$= \frac{x^2}{2} - 2x - \frac{2}{x} + 2 \cdot \ln(x^2 + 2x + 2) - 2 \arctan(x + 1) + C.$$

Стоит отметить, что любая рациональная функция может быть проинтегрирована в элементарных функциях.

Интегрирование тригонометрических функций. Универсальная тригонометрическая подстановка

Обозначим за $R(\sin x;\cos x)$ рациональную функцию с переменными $\sin x$ и $\cos x$, другими словами, над синусом и косинусом выполняются рациональные действия — сложение, вычитание, умножение и деление.

Чтобы вычислить интеграл вида $\int R(\sin x;\cos x)dx$, используют универсальную тригонометрическую подстановку $\operatorname{tg} \frac{x}{2} = t$. Универсальная тригонометрическая подстановка сводит $\int R(\sin x;\cos x)dx$ к интегралу от рациональной функции.

При универсальной тригонометрической подстановке делают следующие замены:

$$tg \frac{x}{2} = t;$$

$$\sin x = \frac{2\operatorname{tg}\frac{x}{2}}{1 + \operatorname{tg}^2\frac{x}{2}} = \frac{2t}{1 + t^2}, \ \cos x = \frac{1 - \operatorname{tg}^2\frac{x}{2}}{1 + \operatorname{tg}^2\frac{x}{2}} = \frac{1 - t^2}{1 + t^2}, \ dx = \frac{2}{1 + t^2}dt.$$

Зачастую при решении задач бывают удобны другие, более простые, подстановки. Например:

- 1. Если функция $R(-\sin x;\cos x) = -R(\sin x;\cos x)$, то есть функция нечетна относительно синуса, то используют подстановку $\cos x = t$;
- 2. Если функция $R(\sin x; -\cos x) = -R(\sin x; \cos x)$, то есть функция нечетна относительно косинуса, то используют подстановку $\sin x = t$;
- 3. Если функция $R(-\sin x; -\cos x) = R(\sin x; \cos x)$, то есть функция четна относительно синуса и косинуса, то используют подстановку tg x = t.

Пример.

Найти интеграл
$$\int \frac{dx}{\sin x + \cos x + 4}$$
.

Используем универсальную тригонометрическую подстановку tg $\frac{x}{2} = t$, тогда:

$$\int \frac{dx}{\sin x + \cos x + 2} = \begin{vmatrix} \log \frac{x}{2} = t, \\ \sin x = \frac{2t}{1+t^2} & \cos x = \frac{1-t^2}{1+t^2} \end{vmatrix} = \int \frac{\frac{2dt}{1+t^2}}{\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} + 2} =$$

$$= \int \frac{2dt}{\left(1+t^2\right)\left(\frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2} + 2\right)} = \int \frac{2dt}{2t+1-t^2+2+2t^2} = \int \frac{2dt}{t^2+2t+3} =$$

$$= \int \frac{2dt}{\left(t^2+2t+1\right)+2} = \int \frac{2dt}{\left(t+1\right)^2+2} = \begin{vmatrix} z=t+1 \\ dz=dt \end{vmatrix} = \int \frac{2dz}{z^2+2} = \frac{2}{\sqrt{2}} \arctan\left(\frac{z}{\sqrt{2}}\right) + C =$$

$$= \sqrt{2}\arctan\left(\frac{t+1}{\sqrt{2}}\right) + C = \sqrt{2}\arctan\left(\frac{t}{\sqrt{2}}\right) + C.$$

Пример.

Найти интеграл $\int \frac{dx}{\cos^2 x + 1}$.

Поскольку $R(-\sin x; -\cos x) = \frac{1}{(-\cos x)^2 + 1} = \frac{1}{\cos^2 x + 1} = R(\sin x; \cos x),$ то

имеем случай 3), следовательно, используем подстановку tg x = t.

$$\int \frac{dx}{\sin^2 x + 2} = \begin{vmatrix} \operatorname{tg} x = t, \\ x = \operatorname{arctg} t, \ dx = \frac{dt}{1 + t^2} \\ \sin^2 x = \frac{\operatorname{tg}^2 x}{1 + \operatorname{tg}^2 x} = \frac{t^2}{1 + t^2} \end{vmatrix} = \int \frac{\frac{dt}{1 + t^2}}{\frac{t^2}{1 + t^2} + 2} = \int \frac{dt}{\left(1 + t^2\right) \left(\frac{t^2}{1 + t^2} + 2\right)} = \int \frac{dt}{1 + t^2} = \int \frac{dt}{1 + t^2} dt$$

$$= \int \frac{dt}{3t^2 + 2} = \frac{1}{3} \int \frac{dt}{t^2 + \frac{2}{3}} = \frac{1}{3} \cdot \sqrt{\frac{3}{2}} \cdot \operatorname{arctg} \left(\frac{t\sqrt{3}}{\sqrt{2}}\right) + C = \frac{1}{\sqrt{6}} \operatorname{arctg} \left(\frac{3\operatorname{tg} x}{\sqrt{6}}\right) + C.$$

Покажем еще один способ решения данного примера.

$$\int \frac{dx}{\sin^2 x + 2} = \int \frac{dx}{\sin^2 x + 2\sin^2 x + 2\cos^2 x} = \int \frac{dx}{3\sin^2 x + 2\cos^2 x}.$$

Разделим числитель и знаменатель полученной дроби на $\cos^2 x$.

$$\int \frac{dx}{3\sin^2 x + 2\cos^2 x} = \int \frac{\frac{dx}{\cos^2 x}}{3tg^2 x + 2} = \begin{vmatrix} t = tg x, \\ dt = \frac{dx}{\cos^2 x} \end{vmatrix} = \int \frac{dt}{3t^2 + 2} = \frac{1}{3} \int \frac{dt}{t^2 + \frac{2}{3}} = \frac{1}{3} \cdot \sqrt{\frac{3}{2}} \cdot \arctan\left(\frac{t\sqrt{3}}{\sqrt{2}}\right) + C = \frac{1}{\sqrt{6}} \arctan\left(\frac{3tg x}{\sqrt{6}}\right) + C.$$

ПРИМЕР РЕШЕНИЯ ТИПОВОГО ВАРИАНТА КОНТРОЛЬНОЙ РАБОТЫ

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int \frac{x^5 + 3\sqrt{x}}{x^4} dx;$$

$$6) \int \frac{1}{\sqrt{1-5x}} dx;$$

$$\mathbf{B}) \int x \ln(x+5) dx.$$

Решение:

а) Преобразуем исходный интеграл, используя свойства линейности неопределенного интеграла $\int \left(af(x) + bg(x)\right) dx = a \int f(x) dx + b \int g(x) dx,$ и воспользуемся таблицей неопределенных интегралов:

$$\int \frac{x^5 + 3\sqrt{x}}{x^4} dx = \int \left(\frac{x^5}{x^4} + \frac{3\sqrt{x}}{x^4}\right) dx = \int \left(x + 3x^{\frac{1}{2}} \cdot x^{-4}\right) dx = \int \left(x + 3x^{-\frac{7}{2}}\right) dx =$$

$$= \int x dx + 3\int x^{-\frac{7}{2}} dx = \frac{x^2}{2} + 3 \cdot \frac{x^{-\frac{5}{2}}}{-\frac{5}{2}} + C = \frac{x^2}{2} - \frac{6}{5} \cdot x^{-\frac{5}{2}} + C.$$

б) Формула замены переменной в неопределенном интеграле имеет вид $\int f(x) dx = \int f \left[\varphi(t) \right] \cdot \varphi'(t) dt, \ x = \varphi(t).$

Введем новую переменную с помощью замены $t = \sqrt{1-5x}$, тогда

$$t^2 = 1 - 5x$$
, $x = \frac{t^2 - 1}{-5}$, $x = \frac{1 - t^2}{5}$ откуда $dx = \left(\frac{1 - t^2}{5}\right)' dt = -\frac{2t}{5} dt$.

Таким образом, исходный интеграл примет вид:

$$\int \frac{1}{\sqrt{1-5x}} dx = \int \frac{1}{t} \cdot \left(-\frac{2t}{5} dt \right) = -\frac{2}{5} \int dt = -\frac{2}{5} t + C.$$

Сделав обратную замену, получаем:

$$\int \frac{1}{\sqrt{1-5x}} dx = -\frac{2}{5} \sqrt{1-5x} + C.$$

в) Формула интегрирования по частям в неопределенном интеграле имеет вид $\int u dv = uv - \int v du$.

Идея интегрирования по частям состоит в следующем: исходное подынтегральное выражение разбивают на два множителя, один из которых обозначают за u, а другой — за dv, причем dx должен входить в множитель dv, а v можно найти, проинтегрировав dv. Если окажется, что новый интеграл $\int v du$ вычисляется проще, чем исходный $\int u dv$, то цель достигнута.

Обозначим $u = \ln(x+5), \ dv = xdx, \$ тогда $du = \left(\ln(x+5)\right)' dx, \ \int dv = \int x dx,$ следовательно, $du = \frac{1}{x+5} dx, \ v = \frac{x^2}{2}.$

Далее, применив формулу интегрирования по частям, получим:

$$\int x \ln(x+5) dx = \left(\ln(x+5)\right) \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{x+5} dx = \frac{x^2}{2} \cdot \ln(x+5) - \frac{1}{2} \int \frac{x^2}{x+5} dx$$

Интеграл $-\frac{1}{2}\int \frac{x^2}{x+5} dx$ посчитаем отдельно.

$$-\frac{1}{2}\int \frac{x^2}{x+5} dx = -\frac{1}{2}\int \frac{x^2 - 25 + 25}{x+5} dx = -\frac{1}{2}\int \left(\frac{x^2 - 25}{x+5} + \frac{25}{x+5}\right) dx =$$

$$= -\frac{1}{2}\int \left(\frac{(x-5)(x+5)}{x+5} + \frac{25}{x+5}\right) dx = -\frac{1}{2}\left(\int (x-5) dx + 25\int \frac{1}{x+5} dx\right) =$$

$$= -\frac{1}{2}\left(\frac{x^2}{2} - 5x + 25\ln(x+5)\right) + C = -\frac{x^2}{4} + \frac{5}{2}x - \frac{25}{2} \cdot \ln(x+5) + C.$$

Таким образом:

$$\int x \ln(x+5) dx = \frac{x^2}{2} \cdot \ln(x+5) - \frac{x^2}{4} + \frac{5}{2}x - \frac{25}{2} \cdot \ln(x+5) + C =$$

$$= -\frac{x^2}{4} + \frac{5}{2}x + \left(\frac{x^2}{2} - \frac{25}{2}\right) \cdot \ln(x+5) + C.$$

Ответ:

a)
$$\int \frac{x^5 + 3\sqrt{x}}{x^4} dx = \frac{x^2}{2} - \frac{6}{5} \cdot x^{-\frac{5}{2}} + C;$$

6)
$$\int \frac{1}{\sqrt{1-5x}} dx = -\frac{2}{5} \sqrt{1-5x} + C;$$

B)
$$\int x \ln(x+5) dx = -\frac{x^2}{4} + \frac{5}{2}x + \left(\frac{x^2}{2} - \frac{25}{2}\right) \cdot \ln(x+5) + C.$$

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{2x-6}{(x-1)^2(x^2-6x+13)} dx.$$

<u>Решение:</u> Поскольку подынтегральное выражение представляет собой дробно-рациональную функцию, мы можем разложить ее на сумму дробей.

Квадратный трехчлен $x^2-6x+13$ корней не имеет, так как его дискриминант D=36-52=-16<0.

Используя метод неопределенных коэффициентов, разложим исходную дробь на сумму дробей следующим образом:

$$\frac{2x-6}{(x-1)^2(x^2-6x+13)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2-6x+13}.$$

Нам необходимо найти A, B, C, D.

Приведем выражение $\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2-6x+13}$ к общему знаменателю

и получим:

$$\frac{2x-6}{(x-1)^2(x^2-6x+13)} = \frac{A(x-1)(x^2-6x+13) + B(x^2-6x+13) + (Cx+D)(x-1)^2}{(x-1)^2(x^2-6x+13)}.$$

Получим тождественное равенство

$$A(x-1)(x^{2}-6x+13) + B(x^{2}-6x+13) + (Cx+D)(x-1)^{2} = 2x-6,$$

$$A(x^{3}-7x^{2}+19x-13) + B(x^{2}-6x+13) + (Cx+D)(x^{2}-2x+1) = 2x-6,$$

$$A(x^{3}-7x^{2}+19x-13) + B(x^{2}-6x+13) + Cx^{3}-2Cx^{2} + Cx + Dx^{2}-2Dx + D = 2x-6,$$

$$Ax^{3}-7Ax^{2}+19Ax-13A + Bx^{2}-6Bx+13B + Cx^{3}-2Cx^{2} + Cx + Dx^{2}-2Dx + D = 2x-6,$$

$$(A+C)x^{3}+(-7A+B-2C+D)x^{2}+(19A-6B+C-2D)x-13A+13B+D=2x-6.$$

Составим систему уравнений, приравняв коэффициенты при одинаковых степенях x в левой и правой частях выражения:

$$\begin{vmatrix} x^{3} \\ x^{2} \\ -7A + B - 2C + D = 0 \\ x^{1} \\ 19A - 6B + C - 2D = 2 \\ x^{0} \\ -13A + 13B + D = -6 \end{vmatrix}$$

Решим полученную систему.

$$\begin{cases} A+C=0 \\ -7A+B-2C+D=0 \\ 19A-6B+C-2D=2 \\ -13A+13B+D=-6 \end{cases} \Leftrightarrow \begin{cases} A=-C \\ 7C+B-2C+D=0 \\ -19C-6B+C-2D=2 \\ 13C+13B+D=-6 \end{cases} \Leftrightarrow \begin{cases} A=-C \\ 5C+B+D=0 \\ -18C-6B-2D=2 \\ 13C+13B+D=-6 \end{cases}$$

Сложив второе, третье и четвертое уравнения, сразу найдем B

$$\begin{cases} 8B = -4 \\ 5C + B + D = 0 \\ -18C - 6B - 2D = 2 \end{cases} \Leftrightarrow \begin{cases} B = -0.5 \\ 5C + D = 0.5 \\ -18C - 2D = -1 \end{cases} \Leftrightarrow \begin{cases} 10C + 2D = 1 \\ -18C - 2D = -1 \end{cases} \Leftrightarrow \begin{cases} C = 0 \\ D = 0.5 \\ B = -0.5 \\ A = 0 \end{cases}$$

В итоге имеем
$$\frac{2x-6}{(x-1)^2(x^2-6x+13)} = -\frac{1}{2(x-1)^2} + \frac{1}{2(x^2-6x+13)}.$$

$$\int \frac{2x-6}{(x-1)^2(x^2-6x+13)} dx = \int -\frac{1}{2(x-1)^2} dx + \int \frac{1}{2(x^2-6x+13)} dx =$$

$$= -\frac{1}{2} \int \frac{1}{(x-1)^2} dx + \frac{1}{2} \int \frac{1}{x^2-6x+13} dx.$$

Посчитаем оба интеграла по отдельности.

$$-\frac{1}{2}\int \frac{1}{(x-1)^2} dx = \begin{vmatrix} t = x - 1 \\ x = t + 1 \\ dx = dt \end{vmatrix} = -\frac{1}{2}\int \frac{1}{t^2} dt = -\frac{1}{2}\int t^{-2} dt = -\frac{1}{2} \cdot \frac{t^{-1}}{-1} + C_1 = \frac{1}{2} \cdot \frac{1}{t} + C_1 = \frac{1}{2} \cdot \frac{1}{t} + C_1 = \frac{1}{2(x-1)} + C_1.$$

$$\frac{1}{2}\int \frac{1}{x^2 - 6x + 13} dx = \frac{1}{2}\int \frac{1}{(x^2 - 2 \cdot 3 \cdot x + 9) - 9 + 13} dx = \frac{1}{2}\int \frac{1}{(x-3)^2 + 4} dx = \frac{t}{2}\int \frac{1}{t^2 + 2^2} dt = \frac{1}{2} \cdot \frac{1}{2} \cdot \arctan \left(\frac{t}{2} + C_2 \right) = \frac{1}{4} \arctan \left(\frac{x-3}{2} + C_2 \right).$$

Таким образом, исходный интеграл равен

$$\int \frac{2x-6}{(x-1)^2(x^2-6x+13)} dx = \frac{1}{2(x-1)} + \frac{1}{4} \operatorname{arctg} \frac{x-3}{2} + C, \text{ где } C = C_1 + C_2.$$

$$\underline{\text{Ответ:}} \int \frac{2x-6}{(x-1)^2(x^2-6x+13)} dx = \frac{1}{2(x-1)} + \frac{1}{4} \operatorname{arctg} \frac{x-3}{2} + C.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{\sin x + 5}.$$

<u>Решение:</u> Подобного вида интегралы решаются с помощью *универсальной* $mpuгонометрической подстановки <math>tg\frac{x}{2} = t$.

Данная подстановка позволяет свести исходный тригонометрический интеграл к интегралу от рациональных функций. При этом осуществляются следующие замены $\sin x = \frac{2t}{1+t^2}$; $\cos x = \frac{1-t^2}{1+t^2}$; $dx = \frac{2dt}{1+t^2}$, где x = 2arctgt.

Имеем
$$\int \frac{dx}{\sin x + 5} = \int \frac{\frac{2dt}{1 + t^2}}{\frac{2t}{1 + t^2} + 5} = 2\int \frac{dt}{(1 + t^2) \left(\frac{2t + 5 + 5t^2}{1 + t^2}\right)} = 2\int \frac{dt}{5t^2 + 2t + 5}.$$

Чтобы вычислить полученный интеграл, нужно выделить в знаменателе полный квадрат, что приведет к табличному интегралу вида $\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C.$

Преобразуем знаменатель дроби:

$$5t^{2} + 2t + 5 = 5\left(t^{2} + \frac{2}{5}t + 1\right) = 5\left(\left(t^{2} + 2 \cdot \frac{1}{5}t + \left(\frac{1}{5}\right)^{2}\right) - \left(\frac{1}{5}\right)^{2} + 1\right) = 5\left(\left(t + \frac{1}{5}\right)^{2} + \frac{24}{25}\right).$$

Получаем

$$2\int \frac{dt}{5t^{2} + 2t + 5} = 2\int \frac{dt}{5\left(\left(t + \frac{1}{5}\right)^{2} + 2\frac{4}{25}\right)} = \frac{2}{5}\int \frac{dt}{\left(t + \frac{1}{5}\right)^{2} + 2\frac{4}{25}} =$$

$$\begin{vmatrix} z = t + \frac{1}{5} \\ t = z - \frac{1}{5} \\ dt = dz \end{vmatrix} = \frac{2}{5}\int \frac{dz}{z^{2} + 2\frac{4}{25}} = \frac{2}{5} \cdot \frac{1}{\sqrt{\frac{24}{25}}} \cdot \arctan \left(\frac{z}{\sqrt{\frac{24}{25}}}\right) + C =$$

$$= \frac{1}{\sqrt{6}}\arctan \left(\frac{5(t + \frac{1}{5})}{2\sqrt{6}}\right) + C = \frac{1}{\sqrt{6}}\arctan \left(\frac{5(t + \frac{1}{5})}{2\sqrt{6}}\right) + C = \frac{1}{\sqrt{6}}\arctan \left(\frac{5tg\frac{x}{2} + 1}{2\sqrt{6}}\right) + C.$$

$$\int \frac{dx}{dx} = \frac{1}{\sqrt{6}} \frac{3tg\frac{x}{2} + 1}{2\sqrt{6}} = \frac{1}{\sqrt{6}}\arctan \left(\frac{5tg\frac{x}{2} + 1}{2\sqrt{6}}\right) + C.$$

$$\underline{\text{OTBET:}} \int \frac{dx}{\sin x + 5} = \frac{1}{\sqrt{6}} \arctan \frac{5tg \frac{x}{2} + 1}{2\sqrt{6}} + C.$$

ВАРИАНТЫ ЗАДАНИЙ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ

ВАРИАНТ 1

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int \frac{x^3 + x^2 + 1}{\sqrt[3]{x^2}} dx$$
;

6)
$$\int ctg \, 2x dx$$
;

B)
$$\int (4+x) \cdot \ln x dx$$
.

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{dx}{1+x^3}.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{5 - 3\cos x}.$$

ВАРИАНТ 2

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int e^x \cdot \left(3 - \frac{e^{-x}}{\cos^2 x}\right) dx;$$

6)
$$\int e^{x^3} \cdot x^2 dx$$
;

B)
$$\int x \cdot \sin 3x dx$$
.

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{2xdx}{x^3 + 8}.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{5 - \cos x}.$$

ВАРИАНТ 3

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int \left(\frac{1}{1+x^2} - \frac{5}{\sqrt{1-x^2}} \right) dx;$$

$$6) \int \frac{3\sin x dx}{1 + 4\cos x};$$

B)
$$\int x \cdot \cos 5x dx$$
.

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{x^2 dx}{x^2 - 16}.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{5 + 4\cos x}.$$

ВАРИАНТ 4

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int \left(\frac{3}{x} - \frac{2}{\sqrt{9 - 9x^2}}\right) dx;$$

$$6) \int \frac{\sin x dx}{\sqrt{1 + 4\cos x}};$$

$$\mathbf{B}) \int (3x+1)e^{-2x}dx.$$

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{2x^3 + 5}{x^2 - 3x + 2} dx.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{\left(1+\cos x\right)^2}.$$

ВАРИАНТ 5

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

$$a) \int \frac{3x^8 + 4}{x^4} dx;$$

$$6) \int \frac{5x^2dx}{x^3+1};$$

$$\mathbf{B}) \int (x-2)e^x dx.$$

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{x^3 + 8}{x^2 - x} dx.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{5 - 4\cos x}.$$

ВАРИАНТ 6

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int \frac{6x^2 dx}{1 + x^2}$$
;

$$6) \int \frac{dx}{\sqrt{1-4x}};$$

$$\mathbf{B}) \int x \ln(x+3) dx.$$

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{x+3}{(x-2)(x+5)} dx.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{1+\sin x}.$$

ВАРИАНТ 7

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int (3e^x - x^3 \sqrt{x}) dx$$
;

$$6) \int \frac{4^{\sqrt{x}} dx}{\sqrt{x}};$$

B)
$$\int \arccos x dx$$
.

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{x-4}{(x-2)(x+3)} dx.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{7 - 5\sin x}.$$

ВАРИАНТ 8

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int \frac{4 - \sin^2 x}{\sin^2 x} dx;$$

6)
$$\int \sin^3 x \cdot \cos x dx;$$

$$\mathbf{B}) \int (2x+3)\sin 2x dx.$$

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{4+3\sin x}.$$

ВАРИАНТ 9

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int \left(3^x - \frac{20}{x^6}\right) dx;$$

6)
$$\int \frac{\sqrt{x}dx}{1+x}$$
;

B)
$$\int (4x-1)\cos x dx$$
.

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{x^2}{(x^2+1)(x-2)} dx.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{3 + 2\sin x}.$$

ВАРИАНТ 10

Задание 1. Найти интегралы:

- а) Используя свойства и таблицу неопределенных интегралов;
- б) Методом замены переменной;
- в) Методом интегрирования по частям.

a)
$$\int \frac{x^7 + 5\sqrt{x}}{x^4} dx;$$

$$6) \int \frac{7x^2 dx}{x^3 - 1};$$

$$\mathbf{B}) \int 5x \cdot e^{-x} dx.$$

Задание 2. Найти интеграл методом неопределённых коэффициентов

$$\int \frac{x-3}{x^2-4} dx.$$

Задание 3. Найти тригонометрический интеграл

$$\int \frac{dx}{7 - 4\cos x}.$$

Вопросы для самоконтроля

- 1. Дайте определение первообразной функции.
- 2. Что называется неопределенным интегралом?
- 3. Как выполнить проверку правильности нахождения неопределенного интеграла?
- 4. Назовите основные свойства неопределенного интеграла.
- 5. Перечислите интегралы, которые входят в таблицу неопределенных интегралов.
- 6. В чем суть метода непосредственного интегрирования?
- 7. В чем суть интегрирования методом замены переменной?
- 8. В чем суть метода интегрирования по частям?
- 9. Приведите формулу интегрирования по частям.
- 10. Какие приемы применяются при интегрировании рациональных дробей?
- 11. Какие подстановки применяются при интегрировании тригонометрических функций?
- 12. Всегда ли интегралы вида $\int R(\sin x; \cos x) dx$ можно вычислить с помощью универсальной тригонометрической подстановки?

Литература

Берман Г.Н. Сборник задач по курсу математического анализа: учебное пособие / Г.Н. Берман. — 9-е изд., стер. — Санкт-Петербург: Лань, 2020. — 492 с. — ISBN 978-5-8114-4862-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/126705. — Режим доступа: для авториз. пользователей.

Бугров Я.С. Сборник задач по высшей математике: учебник / Я.С. Бугров, С.М. Никольский. — 4-е изд. — Москва: ФИЗМАТЛИТ, 2001. — 304 с. — ISBN 5-9221-0177-3. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/2124. — Режим доступа: для авториз. пользователей.

Бугров Я.С. Высшая математика в 3 т. Т. 1. Дифференциальное и интегральное исчисление в 2 кн. Книга 2: учебник для вузов / Я.С. Бугров, С.М. Никольский. — 7-е изд., стер. — Москва: Издательство Юрайт, 2020. — 246 с. — (Высшее образование). — ISBN 978-5-534-02150-9. — Текст: электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/452427. — Режим доступа: для авториз. пользователей.

Письменный Д.Т. Конспект лекций по высшей математике. Полный курс / Письменный Д.Т. - 4-е изд. - М.: Айрис-пресс, 2006. - 602 с.: ил. - (Высшее образование). - ISBN 5-8112-1778-1.