
Изучение прочностных характеристик материала

Студент:		Группа:	Дата выполнения:
Цель работы:			
Прочность -			
Упругость -			
Пластичность -			
Напряжение -			
Предел упругости () -		
Предел пропорциона.	льности () -	
Предел текучести () -		
Предел прочности () -		

Порядок выполнения работы:

Расчёты:

Вывод:

σе, МПа	σ _{пц} , МПа	σ₁, МПа	σ₃, МПа	δ, %	ψ, %

- 1. Какими механическими свойствами характеризуют конструкционные материалы?
- 2. Как на практике определяется предел прочности?
- 3. Назовите определение (на выбор преподавателя).
- 4. Назовите формулу для расчёта параметра (на выбор преподавателя) и поясните входящие в неё величины.

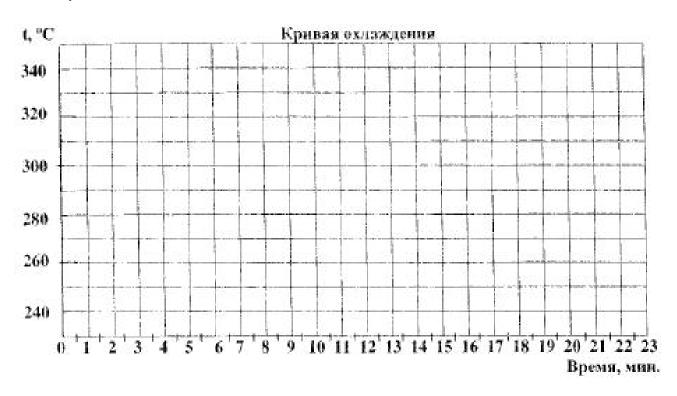
Изучение характеристик твёрдости материалов.

Студент:	Группа:	Дата выполнения
Цель работы:		
Твердость -		
Твердомер -		
Индентор -		
НВ -		
HRB -		
HRC -		
	Порялок выполнения г	работы:

Выполнение работы:

Диаметр отпечатка по Бринеллю, мм	Твердость по Бринеллю расчетная, НВ	Твердость по Бринеллю табличная, НВ	Твердость по Роквеллу табличная, HRB	Твердость по Роквеллу измеренная, HRB
Среднее значение				

Среднее значение		
Рассчеты:		
Выводы:		
r 1		


- 1. Что такое твёрдость?
- 2. Какие существуют основные методы определения твёрдости, чем отличаются?
- 3. Как на практике определяется твёрдость по методу Бринелля?
- 4. Какими символами обозначаются разные способы измерения твёрдости, как они переводятся между собой?
- 5. Назовите определение.

Построение кривой охлаждения металла

Студент:	группа:	Дата:
Цель работы:		
Сплав -		
Компонент сплава -		
Кристаллизация -		
тристализации		
To		
Критическая точка -		
Кривая охлаждения -		
	Порядок выполнения работы:	

Вре - мя, мин.	Темпе - ратура, °С	Вре - мя, мин.	Темпе- ратура, °С	Вре- мя, мин.	Темпе- ратура, °С	Вре- мя, мин.	Темпе ратура, °С	Вре- мя, мин.	Темпе- ратура, °С
0		4.5	7/25	9		13.5		18	
0.5		5		9.5		14		18.5	59-333
1	Same a resolu	5.5		10		14.5	y contraction to a	19	
1.5		6	Same and	10.5		15		19.5	
2		6.5		11		15.5		20	
2.5		7		11.5	III. AT William Control of	16	300 101	20.5	
3		7.5		12		16.5		21	
3.5		8		12.5		17		21.5	0388050
4	- Carrier State	8.5		13		17.5		22	

Схема установки

Выводы:

- 1. Опишите эксперимент по построению кривой охлаждения.
- 2. Сколько критических точек может иметь чистый металл и сплавы, почему?
- 3. Отличается ли реальная температура кристаллизации от теоретической, почему?
- 4. Назовите определение на выбор преподавателя.

Изучение микроструктуры сталей и чугунов

Группа:	Студент:	Дата
Цель работы:		
Сталь -		
Феррит (Ф) -		
Цементит вторичный (Ц _{ІІ}) -		
Перлит (П) -		
Аустенит (А) -		
Чугун -		
Ледебурит (Л) -		
Белый чугун -		
Серый чугун -		
Ковкий чугун -		
Высокопрочный чугун -		
	Порядок выполения работы:	

№ образц а	Зарисовка микроструктуры	Фазов ый состав	Марка по ГОСТ	Механически е свойства, НВ или σ _в	Назначение
1					
2					
3					
4					
5					
6					
7					
8					

- 1. Что такое сталь, доэвтектоидная сталь, эвтектоидная сталь, заэвтектоидная сталь?
- 2. Какие структурные составляющие есть в углеродистой стали?
- 3. Что такое чугун, доэвтектический, эвтектический, заэвтектический?
- 4. На какие виды по типу основы делятся технические чугуны, чем отличаются структуры технических чугунов?
- 5. Как содержание углерода отображается в маркировке сталей?
- 6. Как маркируются и расшифровываются марки серых, ковких и высокопрочных чугунов?

Влияние различных видов термообработки на твёрдость стали.

Группа:	Студент:	Дата
Цель работы:		
Термообработка (ТО) -		
Отжиг II рода -		
Нормализация -		
Закалка -		
Отпуск -		
Улучшение -		
Мартенсит закалки -		
Тростит закалки -		
Сорбит закалки -		
Мартенсит отпуска -		
Тростит отпуска -		
Сорбит отпуска -		

Порядок выполнения работы:

Таблица 1

Вид ТО	Отжиг (сырая сталь)	Закалка в воде (мартенсит закалки)	Закалка в масле (тростит закалки)	Закалка на воздухе (нормализация, сорбит закалки)	Низкий отпуск при 200°С (мартенсит отпуска)	Средний отпуск при 400°С (тростит отпуска)	Высокий отпуск при 600°С (сорбит отпуска)
№ образца	Обр №1	Обр №2	Обр №3	Обр №4	Обр №5	Обр №7	Обр №6
Твёрдость НКС, кгс/мм ²	HRB 80						
Твёрдость НВ							

D		
RIIDAT	тт	•
Вывод	,DI	٠

Вопросы для подготовки:

- 1. Какой процесс называется термообработкой?
- 2. Каким видам термообработки подвергают углеродистую сталь?
- 3. Какие параметры режима выбирают для проведения термообработки?
- 4. По каким параметрам можно проверить правильность сделанной термообработки?
 - 5. Что такое улучшение углеродистой стали?
 - 6. Какие существуют виды отпуска и чем они отличаются?
 - 7. Чем отличается закалка, нормализация и отжиг, что у них одинакового?

Осадка цилиндрического образца.

Студент	Группа	Дата
Цель работы:		
Осадка -		
Матрица -		
Пуансон -		
Бочкообразность -		
TC 11	~	
Коэффициент бочко	ообразования -	
Стрелка бочки -		
Стрелка обчки -		
	Порядок выпо	олнения работы:
	порядок выпо	minim paccibi.

Схема осадки:

Размеры исходной заготовки

№ образца	Высота h ₀ , мм	Диаметр d ₀ , мм	h_0/d_0	Объём V, мм ³
1				
2				

Размеры деформированной детали

№ образца	Высота h,	Диаметр торца нижнего $D_{\text{т.н.}}$, мм	Диаметр торца верхнего $D_{\text{т.в.}}$, мм	Наибольший диаметр бочки, $D_{\Pi \text{изм}}$, мм
1				
2				

Расчёт размеров деформированного образца:

Результаты расчета

№ образца	h_0/d_0	Объём V, мм ³	D _{ид} , мм	D _т , мм	V _ц , мм ³	V ₆ , MM ³	λ%, %	c, MM	D _{П расч} ,
1									
2									

Вывод:

- 1. Что такое осадка?
- 2. Что такое матрица и пуансон, чем они отличаются?
- 3. Что такое коэффициент бочкообразования?
- 4. До какого соотношения h_0/d_0 происходит прямая осадка без потери устойчивости, почему в реальных условиях при осадке образуется бочкообразность?
- 5. Что такое стрелка бочки осаженного образца?