АННОТАЦИЯ

рабочей программы дисциплины

Б1.В.07 «Теория автоматов»

по направлению подготовки бакалавриата

09.03.01 «Информатика и вычислительная техника»

Направленность подготовки

«Вычислительные машины, комплексы, системы и сети»

1. Основные разделы (дидактические единицы) дисциплины

Системы счисления, логические основы цифровых автоматов, арифметические основы цифровых автоматов, абстрактные автоматы, структурные автоматы, микропрограммные автоматы, основы языка VHDL, CAПР QUARTUS II.

2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы

В результате освоения дисциплины обучающийся должен решать следующие профессиональные задачи в соответствии с видами профессиональной деятельности:

Научно-исследовательская деятельность:

- изучение научно-технической информации, отечественного и зарубежного опыта по направлению исследований в области разработки аппаратных средств вычислительной техники;
- математическое моделирование исследуемых объектов на базе стандартных пакетов автоматизированного проектирования;
- проведение экспериментов по проверке корректности и эффективности проектных решений, обработка и анализ результатов;
- проведение технических испытаний, составление описаний проводимых исследований, подготовка данных для составления научных обзоров, отчетов и публикаций.
- составление отчета по выполненному заданию, участие во внедрении результатов исследований и разработок;

Проектно-конструкторская деятельность:

сбор и анализ исходных данных для проектирования средств вычислительной техники;

проектирование аппаратных средств вычислительной техники в соответствии с техническим заданием с использованием современных средств автоматизации проектирования;

разработка и оформление проектной и рабочей технической документации.

В соответствии с ОПОП ВО по данному направлению и направленности подготовки процесс обучения по данной дисциплине направлен на формирование следующих планируемых результатов освоения образовательной программы (компетенций обучающихся, установленных ФГОС ВО или их элементов):

Профессиональные компетенции:

ПКС-3 – способность выполнять работы по созданию и модификации аппаратных и программно – аппаратных компонентов ИТ – систем.

Перечень планируемых результатов обучения по дисциплине (ЗУНов), соотнесенных с планируемыми результатами освоения образовательной программы (компетенциями):

По компетенции ПКС -3 обучающийся должен:

ЗНАТЬ:

- научные и методологические основы теории автоматов, ее значение и место как прикладной науки, модели которой используются при проектировании как аппаратных, так и программных средств вычислительной техники, систем технической диагностики, устройств промышленной автоматики;
- позиционные системы счисления, способы представления числовой информации в вычислительных машинах с фиксированной запятой и с плавающей запятой;
- математический аппарат булевых функций, методы минимизации булевых функций;
- арифметические основы цифровых автоматов и правила выполнения арифметических операций в ЭВМ;
- модели абстрактных автоматов МИЛИ и МУРА, модель C-автомата и способы их применения для проектирования средств вычислительной техники;
- модель дискретного преобразователя Глушкова и т д;
- основы языка VHDL, используемого для спецификации и моделирования на начальных этапах проектирования цифровых устройств, на алгоритмическом и логическом;
- структуру программируемой логической интегральной схемы (ПЛИС);

УМЕТЬ:

- представлять числа в различных системах счисления, выполнять перевод чисел из одной системы счисления в другую;
- выполнять арифметические операции над числами, представленными в прямом, обратном, дополнительном кодах в форматах с фиксированной запятой и плавающей запятой;
- находить логические функции и выполнять их минимизацию методами Квайна, Квайна мак-Класки, Карно, представлять в различных базисах основном, Шеффера, Пирса;
- составлять спецификации абстрактных автоматов;
- строить для автомата МИЛИ эквивалентный автомат МУРА и наоборот;
- выполнять задачу анализа автоматов путем их декомпозиции и задачу синтеза автоматов путем композиции из автоматов заданного типа;
- решать задачу структурного синтеза автоматов с помощью канонического метода структурного синтеза;
- выполнять декомпозицию операционных устройств по принципу Глушкова на управляющий автомат и операционный;
- составлять содержательный и закодированный граф микропрограммы;
- выполнять интерпретацию закодированного графа микропрограммы автоматом МИЛИ и МУРА;
- создавать проекты абстрактных и структурных автоматов в САПР QUARTUS II с использованием разных стилей;
- разрабатывать тесты для верификации проектов;
- выполнять верификацию проектов;
- реализовывать проекты в программируемых логических интегральных схемах (ПЛИС);
- выполнять отладку проектов с использованием дополнительных аппаратных средств в виде учебного стенда.

ВЛАДЕТЬ:

- практическими навыками работы в CAПР QUARTUS II;
- практическими навыками работы с приложением ModelSim;
- современным инструментарием для спецификации, верификации, реализации и отладке проектов в ПЛИС.

.

3. Объем курса, виды учебной работы и формы промежуточной аттестации:

Трудоемкость дисциплины: -6 зачетных единиц

Всего часов (строго по учебному плану) -216 час.

Из них:

Контактная работа $-\underline{90}$ час.

Из них:

Лекции $-\underline{54}$ час.Практические занятия $-\underline{36}$ час.Самостоятельная работа $-\underline{90}$ час.Курсовая работа $-\underline{36}$ час.Подготовка к экзамену $-\underline{36}$ час.

Формы промежуточной аттестации:

-3 семестр Экзамен -4 семестр