Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Мытищинский филиал

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МФ-МГТУ им. Н.Э.Баумана)

ФАКУЛЬТЕТ лесного хозяйства, лесопромышленных технологий и садово-паркового строительства

КАФЕДРА ЛТ-4

С. П. Карпачев

ЛАБОРАТОРНАЯ РАБОТА 1.

Изучение работы нерегулируемого аксиально-поршневого насоса.

Экспериментальное определение напорной характеристики насоса

Отчетный материал

Кафедра ЛТ-4						
Дата проведения лабораторной работы						
Группа						
Список бригады (инструктаж по технике безопасности прошел):						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
Преподаватель:						
проф. Карпачев С.П.						

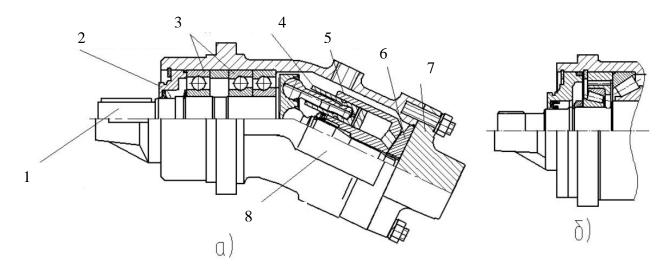


Рисунок 1 — Насос аксиально-поршневой нерегулируемый а) — исполнение с шариковыми радиально-упорными подшипниками, б) — исполнение с роликовыми коническими подшипниками

Гидронасос нерегулируемый аксиально-поршневого типа состоит из следующих основных элементов (рис. 1):

1 —	 	
2 —		
3 —		
4 —		
5 —		
6—		
7 —		
8		

1. Порядок выполнения лабораторной работы

- 1. Ознакомиться с кратким описанием конструкции и принципа работы аксиально-поршневых насосов.
 - 2. Подготовить стенд к работе.
- 3. Изучить часть общей гидравлической схемы стенда, относящуюся к лабораторной работе 1, при положении 2 распределителя Рп (рис. 2) и в положении 3 (рис. 3).
 - 4. Закрыть кран питания мерной емкости МЕ2 (рис. 2).
 - 5. Открыть кран питания кп1 мерной емкости МЕ1.
 - 6. Включить гидростанцию.
- 7. Перевести гидрораспределитель стенда Рп в положение 3 (рис. 3) на подачу жидкости в мерную емкость ME1.
 - 8. Занести значение начального уровня жидкости $V_{\mu a \nu}$ в табл. 1
 - 9. Занести значение начального уровня жидкости $V_{\kappa o \mu}$ в табл. 1
 - 10. Занести время t наполнения мерной емкости ME1 в табл. 1
- 11. С помощью мерной емкости ME1 вычислить действительный расход жидкости Q_{∂} (действительную подачу насоса). Результаты вычислений занести в табл. 1.
 - 12. Занести показание манометра М1 в табл. 1
 - 13. Занести показание вакуумметра Вак1 в табл. 1
 - 14. Определить давление $p_{\scriptscriptstyle H}$. Данные занести в табл. 1.
 - 15. Частично закрыть дроссель 1.
 - 16. Повторить пункты 7-14 для нового положения закрытия дросселя.
- 17. Повторить пункт 15 для нескольких положений закрытия дросселя Др 1.
 - 18. Выключить гидростанцию, открыть дроссель Др 1.
 - 19. По данным таблицы 1 построить график $p_{\scriptscriptstyle H} = f(Q_{\scriptscriptstyle \partial})$.
 - 20. Проанализировать результаты, сделать выводы.

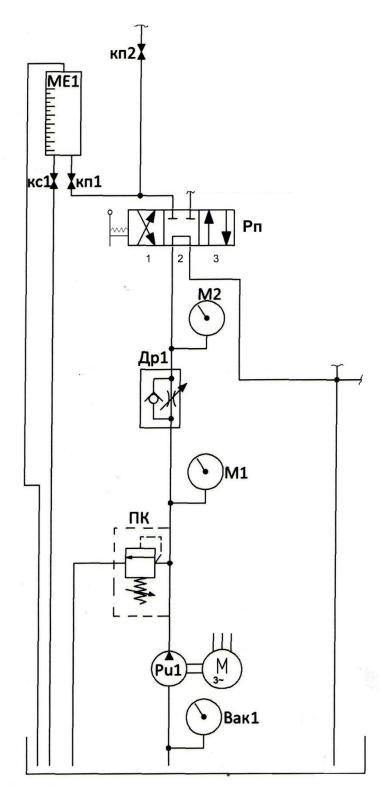
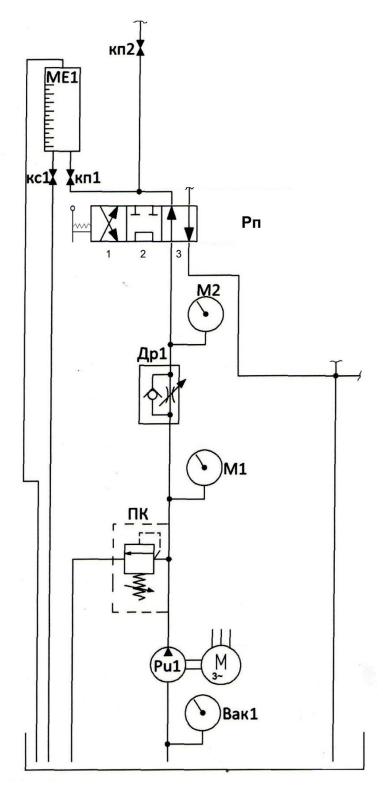
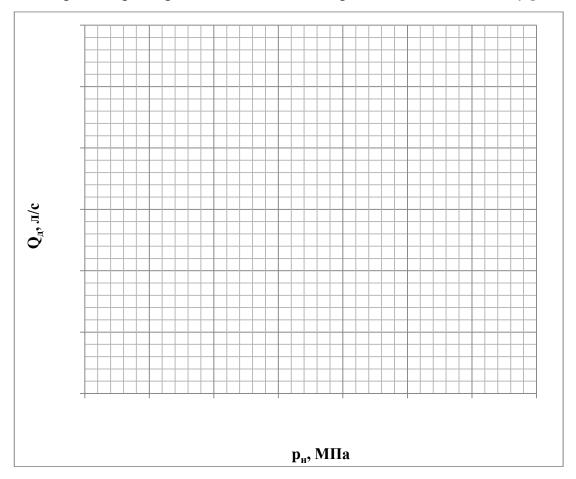


Рисунок 2 – Гидравлическая схема стенда лабораторной работы 1 (распределитель Рп в нейтральном положении 2)

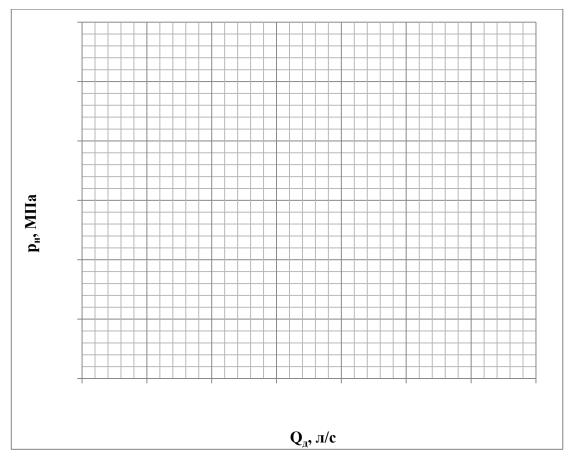

Рисунок 3 – Гидравлическая схема стенда лабораторной работы 1 (распределитель Рп в положении 3)

Таблица 1. Результаты опытов построения напорной характеристики основного насосного агрегата стенда

Измеряемая	№ опыта				
(расчетная) величина	1	2	3	4	5
Значение лимба открытия дросселя Др1					
Настройка предохранительного клапана ПК, $p_{\Pi K}$, МПа					
Начальное значение уровня жидкости в ME1, V_{Haq} , л					
Конечное значение уровня жидкости в ME1, $V_{\kappa o \mu}$, л					
Время <i>t</i> наполнения мерной емкости ME1, с					
Действительная подача насоса, $_{\Pi/C}$ $Q_{o} = \frac{(V_{_{KOH}} - V_{_{HAY}})}{t};$ Показание p_{MI} манометра М1, МПа					
Показание $p_{Baк1}$ вакуумметра Вак1, МПа					
Давление насоса, МПа: $p_{_{H}}=p_{M1}+p_{Ba\kappa 1},$					

Напорная характеристика аксиально-поршневого насоса $Q_{\partial} = f(p_{\scriptscriptstyle H})$

2. Вопросы к лабораторной работе

- 1. Как конструктивно осуществляется подача нерегулируемого аксиально-поршневого насоса?
 - 2. От каких параметров зависит подача насоса?
- 3. Какой показатель характеризует эффективность использования насосом подводимой к нему энергии?
 - 4. Какие виды КПД различают у насоса?
 - 5. Что влияет на КПД насоса?
 - 6. На что влияют утечки насоса?
 - 7. Чем отличается теоретическая подача от действительной?
 - 8. Как определить давление насоса?
 - 9. Какой вид имеет напорная характеристика насоса?
- 10. Как влияет на напорную характеристику насоса давление настройки предохранительного клапана?