Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

Мытищинский филиал

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МФ-МГТУ им. Н.Э.Баумана)

ФАКУЛЬТЕТ лесного хозяйства, лесопромышленных технологий и садово-паркового строительства

КАФЕДРА ЛТ-4

С. П. Карпачев

«Гидравлика и пневматика»

ЛАБОРАТОРНАЯ РАБОТА 1 Определение избыточного и вакуумметрического давления в жидкости

Методические указания

Кафедра ЛТ-4
Дата проведения лабораторной работы
Группа
Список бригады (инструктаж по технике безопасности прошел):
1
2
3
4
5
6
7
8
9
10
Пин и и и и
Преподаватель:
проф. Карпачев С.П.

ЛАБОРАТОРНАЯ РАБОТА № 1 ОПРЕДЕЛЕНИЕ ИЗБЫТОЧНОГО И ВАКУУММЕТРИЧЕСКОГО ДАВЛЕНИЯ В ЖИДКОСТИ

Цель работы: опытная проверка основного уравнения гидростатики.

1. Основные расчетные зависимости

Гидростатическим давлением в жидкости называется напряжение сжатия.

Для однородных капельных жидкостей, находящихся под действием только силы тяжести, давление в точке p внутри жидкости на глубине h выражается зависимостью:

$$p = p_0 + \rho g h \tag{1}$$

где:

р — гидростатическое давление в точке внутри жидкости, Па;

 p_0 — давление на свободной поверхности жидкости, Па;

h — глубина точки внутри жидкости, м;

 ρ — объемный вес жидкости, кг/м³;

g — ускорение свободного падения, 9,81 м/ c^2 .

Гидростатическое давление на свободной поверхности и внутри жидкости в лабораторной работе определяется с помощью приборов — манометра и мановакуумметра и проверяется расчетом по уравнению (1). Высота h столба жидкости в установке измеряется водомерной трубкой. В лабораторных опытах используется жидкость — вода.

2. Схема опытной установки

Схема опытной установки показана на рис. 1.

Лабораторная установка представляет собой металлический цилиндр (1) диаметром 250 мм и высотой 2800 мм.

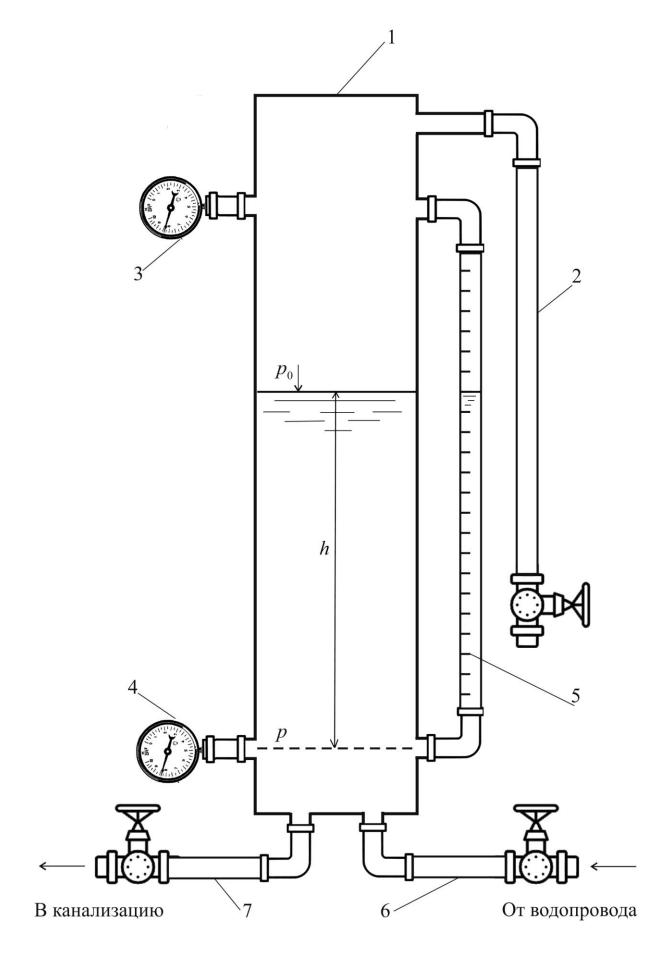


Рисунок 1 – Схема лабораторной установки

Полость цилиндра через трубу (2) сообщается с атмосферой. Для измерения избыточного давления или вакуума к цилиндру присоединены мановакуумметр (3) и манометр (4). Уровень воды в цилиндре измеряется водомерной трубкой (5). Наполнение цилиндра водой осуществляется по трубопроводу (6). Вода из цилиндра сливается по трубе (7).

3. Приборы для измерения гидростатического давления в лабораторной установке

Для измерения давления применяются механические трубчатые манометры и мановакуумметры. Конструкция и принцип действия манометра приведен на рис. 2.

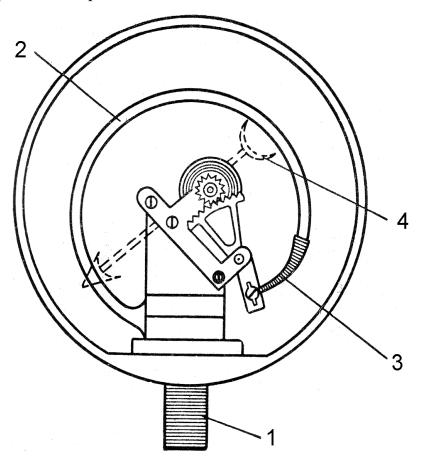


Рисунок 2 – Устройство манометра

- 1 штуцер;
- 2 трубка Бурдона;
- 3 привод рычажно-зубчатого механизма;
- 4 стрелка.

В лабораторной установке для измерения давления применяются механические трубчатые мановакуумметр (рис. 3) и манометр (рис. 4). Шкалы этих приборов отградуированы в к Γ /см 2 и мм рт. ст.

На приборы для измерения давления распространяется ГОСТ 2405-88. «Манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры и тягонапоромеры. Общие технические условия».

Рисунок 3 – Мановакуумметр

Диапазон измерения вакуума мановакуумметром лабораторной установки составляет 760 мм рт.ст., а избыточного давления $-2.5 \text{ к}\Gamma/\text{cm}^2$.

Одно деление вакуумметра — 100 мм рт.ст. Одно деление манометрической шкалы мановакуумметра — $0.1~{\rm k\Gamma/cm}^2$.

Класс точности прибора 2,5. Это означает, что максимальная погрешность прибора при измерении вакуума не превышает 760*2,5/100 = 19 мм рт.ст., а избыточного давления $-2,5*2,5/100 = 0,0625 \approx 0,06$ к Γ/cm^2 .

Рисунок 3 – Манометр

Диапазон измерения манометра лабораторной установки составляет $100*2,5 = 250 \text{ к}\Gamma/\text{cm}^2$. Одно деление шкалы манометра $-0,025 \text{ к}\Gamma/\text{cm}^2$.

4. Порядок выполнения работы

Работа выполняется в трех вариантах.

- 1. На свободной поверхности воды в цилиндре давление атмосферное.
- 2. На свободной поверхности воды в цилиндре давление избыточное.
- 3. На свободной поверхности воды в цилиндре вакуум.

Порядок работы следующий (рис. 1):

- 1-й вариант опыта
- Цилиндр (1) через трубопровод (6) частично заполняется водой. Над свободной поверхностью воды поддерживается атмосферное давление.

- Снимаются показания нижнего манометра (4), верхнего мановакуумметра (3) и высоту воды h в водомерной трубке (5).
 - Все замеры заносятся в таблицу 1.

2-й вариант опыта

- Над свободной поверхностью воды устанавливается давление больше атмосферного. Для этого закрывают кран на трубе (2) и в цилиндр (1) добавляется некоторое количество воды.
- Снимают показания нижнего мановакуумметра (4), верхнего манометра (4) и высоту воды h в водомерной трубке (5).
 - Все замеры заносятся в таблицу 2.

3-й вариант опыта

- Над свободной поверхностью воды в баке создается вакуумметрическое давление, то есть давление меньше атмосферного. Для этого из цилиндра (1) через трубу (2) выпускают избыток воздуха, затем кран на трубе (2) закрывают и выпускают часть воды из цилиндра (1).
- Снимают показания мановакуумметра (3), манометра (4) и высоту воды h в водомерной трубке (5).
 - Все замеры заносятся в таблицу 3.

5. Обработке опытных данных

1. По данным опыта вычисляют абсолютное давление на свободной поверхности воды и абсолютное давление в воде на уровне нижнего манометра.

Абсолютное давление в случае избыточного давления вычисляется по формуле:

$$p_{a\delta c} = p_{us\delta} + p_{amm} \tag{2}$$

где:

 $p_{\rm aбc}$ — абсолютное давление в точке;

 $p_{\text{изб}}$ — манометрическое (избыточное) давление в точке.

Абсолютное давление в случае вакуумметрического давления вычисляется по формуле:

$$p_{abc} = p_{amm} - p_{eak} \tag{3}$$

где:

 $p_{\rm aбc}$ — абсолютное давление в точке;

 $p_{\text{изб}}$ — вакуумметрическое давление в точке.

Следует отметить, что в некоторых приборах вакуумметрическая шкала имеет знак «-». То есть вакуумметрическое давление рассматривается, как отрицательное избыточное. В таком случае следует пользоваться формулой (2), не забывая подставлять избыточное давление со знаком «-».

2. Показания нижнего манометра проверяют по зависимости (1). Результаты всех вычислений заносят в таблицы 1-3.

Таблица 1

Первый вариант опыта.

Давление на свободной поверхности воды – атмосферное

Давление на свободной поверхности воды				Давление н манометра	а уровне ниж	кнего	Показание водомерной трубки	Расчетное давление на уровне нижнего манометра	
			Абсолютное давление	Показание манометра Абсолютное давление				Избыточное (вакуум- метрическое) давление	Абсолютное давление
$\kappa\Gamma/\text{cm}^2$	мм рт.ст.	10 ⁵ Πa	10 ⁵ Па	$\kappa\Gamma/cm^2$	10 ⁵ Πa	10 ⁵ Πa	M	10 ⁵ Па	10 ⁵ Πa
1	2	3	4	5	6	7	8	9	10

Справочный материал:

1 мм рт. ст. = 133,321995 \approx 133 Па

1 к Γ /см² = 98 066,500 Па $\approx 10^5$ Па

Таблица 2

Второй вариант опыта.

Давление на свободной поверхности воды – больше атмосферного (избыточное)

Давление на свободной поверхности воды				Давление н манометра	а уровне ниж	тнего	Показание водомерной трубки	Расчетное давление на уровне нижнего манометра	
Показание мановакуумметра Абсолютн давление			Абсолютное давление	Показание манометра Абсолютное давление				Избыточное (вакуум- метрическое) давление	Абсолютное давление
$\kappa\Gamma/\text{см}^2$	мм рт.ст.	10 ⁵ Πa	10 ⁵ Πa	кГ/см ²	10 ⁵ Πa	10 ⁵ Πa	M	10 ⁵ Πa	10 ⁵ Πa
1	2	3	4	5	6	7	8	9	10

Справочный материал:

1 мм рт. ст. = 133,321995 \approx 133 Па

1 к Γ /см² = 98 066,500 Па $\approx 10^5$ Па

Таблица 3

Третий вариант опыта.

Давление на свободной поверхности воды – меньше атмосферного (вакуумметрическое)

Давление на свободной поверхности воды				Давление н манометра	а уровне ниж	тнего	Показание водомерной трубки	Расчетное давление на уровне нижнего манометра	
			Абсолютное давление	Показание манометра Абсолютное давление				Избыточное (вакуум- метрическое) давление	Абсолютное давление
$\kappa\Gamma/\text{см}^2$	мм рт.ст.	10 ⁵ Πa	10 ⁵ Πa	$\kappa\Gamma/cm^2$	10 ⁵ Πa	10 ⁵ Πa	M	10 ⁵ Πa	10 ⁵ Πa
1	2	3	4	5	6	7	8	9	10

Справочный материал:

1 мм рт. ст. = 133,321995 \approx 133 Па

 $1 \text{ κ}\Gamma/\text{cm}^2 = 98 \ 066,500 \ \Pi a \approx 10^5 \ \Pi a$