Государственное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЛЕСА»

Г.Л. Олиференко, А.Н. Иванкин

ТЕСТЫ ПО АНАЛИТИЧЕСКОЙ ХИМИИ

Рекомендовано к изданию Редакционно-издательским советом университета в качестве учебно-методического пособия для студентов специальности Химическая технология (Технология химической переработки древесины)

Москва Издательство Московского государственного университета леса 2016

Разработано в соответствии с Государственным образовательным стандартом для направления подготовки «Химическая технология» на основе примерной программы дисциплины «Аналитическая химия»

Рецензенты: доцент кафедры химической технологии древесины и полимеров А.Н. Веревкин;

доцент кафедры химической технологии древесины и полимеров А.Н. Зарубина

Работа подготовлена на кафедре химии и биотехнологии лесного комплекса

Олиференко Г.Л.

О54 Тесты по аналитической химии: учеб.-методич. пособие /Г.Л. Олиференко, А.Н. Иванкин. – М. : ГОУ ВПО МГУЛ, 2016. – 21 с.

Учебно-методическое пособие содержит тесты по качественному и количественному (гравиметрическому и титриметрическому) анализу.

Предназначено для самостоятельной подготовки студентов – химиков и других специальностей к сдаче зачета и экзамена по аналитической химии.

УДК 543

© Г.Л. Олиференко, А.Н. Иванкин, 2016 © ГОУ ВПО МГУЛ, 2016

Предисловие

В пособии содержатся тесты, которые охватывают курс аналитической химии (качественный и количественный анализ) для студентов, изучающих эту дисциплину.

В разделе, посвященном качественному анализу, большое внимание отводится решению тестов на распознавание веществ по их характерным реакциям и на доказательство при помощи аналитических реакций состава данного вещества или смеси веществ. Эти вопросы способствуют лучшему запоминанию важнейших аналитических химических реакций, развивают способность логически рассуждать и повышают интерес к исследовательской работе.

Тесты по количественному анализу охватывают важнейшие методы химического количественного анализа – гравиметрический и титриметрический методы. Эти тесты также дают возможность лучше усвоить изучаемый материал.

Начинать работу с тестами можно перед повторением курса аналитической химии и затем обращаться к теоретическому материалу, выявляя и устраняя пробелы в знаниях, или после повторения соответствующих разделов дисциплины по учебнику и лекциям.

1. КАЧЕСТВЕННЫЙ АНАЛИЗ

1. Добавление раствора кислоты к растворам солей натрия в некоторых случаях может помочь их определению. Какую соль нельзя определить таким способом?						
	(1)Na ₂ S	(2) Na ₂ SO ₄	(3) Na ₂ CO ₃	(4) Na ₂ SiO ₃		
Na ₂ S	-			цятся растворы веществ: ичить эти вещества?		
	(1) HCl	(2) AgNO ₃	(3) KSCN	(4) K4[Fe(CN)6]		
	3. Уксусную	кислоту, аммиа	к и этанол можно	о легко различить:		
	 добавлением соляной кислоты; по цвету; по запаху; по отношению к нагреванию. 4. Характерной аналитической реакцией для катиона Fe ³⁺ не являет-					
ся:						
	 (1) образование комплексных соединений с роданид-ионом; (2) образование «берлинской лазури» с К₄[Fe(CN)₆]; (3) образование «турнбулевой сини» с К₃[Fe(CN)₆]; (4) образование бурого осадка с гидроксид-ионом. 					
5. В двух пробирках находятся сульфат меди и сульфат аммония. Для идентификации веществ необходимо добавить к ним:						
 (1) хлорную воду; (2) КОН; (3) BaCl₂; (4) AgNO₃. 6. В трех пробирках находятся аммиак, соляная кислота, раствор по- 						
варенной соли. Какое соединение из перечисленных необходимо добавить к солержимому пробирок для распознавания этих веществ?						

 $(1)\ H_2SO_4$ $(2)\ Ag_2O$ $(3)\ лакмус$ $(4)\ KOH$

7. Добавление роданида аммония NH_4SCN к раствору хлорида желе за (III) приведет:
(1) к выпадению бурого осадка;(2) к выделению газа;(3) реакция не идет;(4) к изменению окраски раствора в кроваво-красный цвет.
8 . С помощью какого реактива можно различить растворы хлорида железа (III) и хлорида меди (II)?
(1) гидроксида натрия;(2) лакмуса;(3) хлорной воды;(4) иодида калия.
9. С помощью какого реактива можно различить растворы нитрата свинца и нитрата бария?
 (1) уксусной кислоты; (2) серной кислоты; (3) иодида калия; (4) нитрата аммония.
10. Для какой группы веществ характерна реакция с нитратом сереб ра?
(1) хлорид калия, бромид калия, иодид калия;(2) нитрат калия, нитрат натрия, нитрат кальция;(3) нитрат свинца, сульфат бария, карбонат кальция;(4) ацетат калия, нитрат свинца, бромид натрия.
11. С помощью какого вещества можно определить крахмал?
(1) Na_2CO_3 (2) I_2 (3) $AgNO_3$ (4) $Cu(OH)_2$
12. Качественной реакцией на катион аммония является реакция:
(1) с раствором щелочи при нагревании;(2) с азотной кислотой;(3) с соляной кислотой;(4) с карбонатом натрия.

13. В двух пробирках находятся растворы серной кислоты и сульфата меди. Различить их можно, добавив к каждой пробирке:			
(1) раствор гидроксида натрия;(2) уксусную кислоту;(3) раствор нитрата бария;(4) раствор хлорида калия.			
14 . Взаимодействие с каким из веществ является качественной реакцией на нитрат-ионы?			
(1) с соляной кислотой;(2) с хлорной водой;(3) с дифениламином;(4) с бензолом.			
15 . При взаимодействии гексацианоферрата (II) калия с ионами Fe^{34} наблюдается образование:			
 (1) темно-синего осадка; (2) белого осадка; (3) бурого осадка; (4) кроваво-красного осадка 16. Какой реагент является специфическим для определения катиона аммония? 			
(1) AgNO ₃ (2) I_2 (3) $(C_6H_5)_2NH$ (4) KOH			
17 . Соединение, имеющее название «желтая кровяная соль», имеет формулу:			
(1) NH_4SCN (2) $K_4[Fe(CN)_6]$ (3) $K_3[Fe(CN)_6]$ (4) $(C_6H_5)_2NH$			
18 . Соединение, имеющее формулу $K_4[Fe(CN)_6]$, называется:			
(1) роданид калия;(2) цианид калия;(3) гексацианоферрат (II) калия;(4) гексацианоферрат (III) калия.			

19 . (Ca ²⁺ , Sr ²⁺	19 . Групповым реагентом на катионы второй аналитической группы $(Ca^{2+}, Sr^{2+}, Ba^{2+})$ является:				
(1)	$(NH_4)_2CO_3$	$(2) (NH_4)_2S$	$(3) H_2S$	(4) NH ₄ SCN	
	Групповым 1 +, Ag ²⁺ , Hg ₂ ²⁺		сатионы пятой	аналитической группы	
(1)	$(NH_4)_2CO_3$	$(2) (NH_4)_2 S$	(3) 2 M HCl	(4) 1 н. BaCl ₂	
	-	пламя газовой неской группы	_	елтый цвет следующий	
(1)	K ⁺	(2) Li ⁺	(3) Na ⁺	(4) Cs ⁺	
22.	В каком случ	ае выпадение с	осадка не проис	ходит:	
(2) (3)	(1) $AgNO_3 + NaCl \rightarrow$ (2) $AgNO_3 + KI \rightarrow$ (3) $CuCl_2 + NaOH \rightarrow$ (4) $NH_4OH + NaOH \rightarrow$				
23.	23. Какая реакция обмена идет с выделением газа?				
(2)] (3) <i>L</i>	(1) $CaCl_2 + Na_2CO_3 \rightarrow$ (2) $MgCO_3 + HNO_3 \rightarrow$ (3) $AgNO_3 + NaOH \rightarrow$ (4) $FeCl_2 + NaOH \rightarrow$				
24 . Для уравнения реакции $FeCl_2 + NaOH \rightarrow \dots$ сокращенное ионное уравнение запишется в виде:					
(1) $Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_{2}$ (2) $FeCl_{2} + 2OH^{-} \rightarrow Fe(OH)_{2} + 2CI^{-}$ (3) $2CI^{-} + 2Na^{+} \rightarrow 2NaCI$ (4) $Fe^{2+} + 2NaOH \rightarrow Fe(OH)_{2} + 2Na^{+}$					

25. Можно приготовить раствор, содержащий одновременно следующие ионы:

(1)
$$Ba^{2+}$$
, Ag^{2+} , Cl^- , SO_4^{2-} (3) Cl^- , NO_3^- , Ba^{2+} , Fe^{3+} (2) Fe^{3+} , PO_4^{3-} , NO_3^- , Ca^{2+} (4) CO_3^{2-} , Ba^{2+} , Ca^{2+} , I^-

(2)
$$Fe^{3+}$$
, PO_4^{3-} , NO_3^{-} , Ca^{2+} (4) CO_3^{2-} , Ba^{2+} , Ca^{2+} , I^{-}

20. C Rake	20. C kakon napon веществ реагирует Ci2!					
` '	(1) NaBr и KI (2) HNO ₃ и Al ₂ O ₃		(3) Na ₂ SiO ₃ и КF (4) Na ₂ SO ₄ и Не			
27. Для проведения опыта надо взять некоторое количество питьевой соды; на склянках же с реактивами указаны только формулы веществ. Склянку с какой этикеткой необходимо взять?						
(1) NaCl	(2) Na ₂ CO ₃	(3) NaHCO ₃	(4) Na ₂ SO ₄			
28 . Какая	соль не относится к і	комплексным?				
(1) KAl(S	$O_4)_2$ (2) K[Al(OH) ₄]	(3) K4[Fe(CN)6]	(4) K3[Fe(SCN)6]			
29 . Различ	нить растворы, содера	жащие Na ₂ CO ₃ и N	NaHCO ₃ можно:			
(2) добави (3) добави (4) добави	 (1) нагрев растворы; (2) добавив HCl; (3) добавив CaCl₂; (4) добавив питьевую соду. 30. При обработке карбоната натрия кислотой образуется: 					
_						
(1) CO_2	(2) CO	$(3) 11_2$	(4) Na ₂ O			
31. В обычном огнетушителе стальной баллон заполнен концентрированным раствором гидрокарбоната натрия с примесью веществ, способствующих образованию пены. Чем заполнена стеклянная ампула, находящаяся в верхней части огнетушителя и разбивающаяся при переворачивании огнетушителя в случае необходимости провести тушение огня? (1) КОН конц. (2) Н ₂ SO _{4 конц.} (3) СаСl _{2конц.} (4) Na ₂ CO _{3конц.}						
	32 . Карбонат натрия и сульфат натрия можно легко различить:					
(2) добавл (3) добавл	(1) по запаху;(2) добавлением соляной кислоты;(3) добавлением раствора нитрата бария;(4) по цвету.					

33 . В двух пробирках находятся растворы хлорида калия и иодида калия. Для распознавания этих веществ не подходит реакция:					
(2) с бромной і(3) с газообраз	(1) с раствором нитрата серебра;(2) с бромной водой;(3) с газообразным хлороводородом;(4) с хлорной водой.				
34. Хлорная во	ода и бензол не р	азличаются:			
	•				
-	эленных ниже ве	еществ с хлорн	ой водой не взаимодей-		
ствует: (1) КСl	(2) KBr	(3) KI	(4) CH2=CH2		
36 . Дифенилам рат-иона в качествен	•	-	г для обнаружения нит- о формулу:		
$(1) C_6H_5NH_2$	$(2) (C_6H_5)_2NH$	$(3) (CH_3)_2NH$	$(4) C_6H_5NO_2$		
37 . Из перечис зуют желтый осадок		ний с растворо	ом нитрата свинца обра-		
(1) KCl	$(2) K_2CO_3$	(3) KI	(4) KCH ₃ COO		
38 . Реакция взаимодействия ионов Fe^{3+} с ионами SCN^- относится к реакциям:					
(1) разложения(2) обмена;	ι;	(3) комплексообразования; (4) соединения.			
39. Дополнительным аналитическим признаком при качественном определении хлорид-ионов по реакции с нитратом серебра является:					
(1) растворение осадка хлорида серебра в аммиаке;(2) растворение осадка хлорида серебра в бензоле;(3) образование осадка желтого цвета;(4) образование осадка белого цвета.					

40. Раствор иода в оензоле имеет:
 желтый цвет; фиолетовый цвет; оранжевый цвет; зеленый цвет.
41 . В двух пробирках находятся растворы нитрата магния и нитрата бария. Различить их можно, добавив к каждой пробирке:
 раствор карбоната натрия; раствор йодида калия; раствор нитрата калия; раствор сульфата натрия.
42 . Взаимодействие с каким из веществ является качественной реакцией на сульфат-анион?
(1) с дифениламином;(2) с анилином;(3) с хлорной водой;(4) с хлоридом бария.
43 . В отличие от сульфата натрия карбонат натрия взаимодействует с образованием углекислого газа:
(1) c BaCl ₂ (2) c HCl (3) c Na ₂ SO ₄ (4) c KOH
44 . Взаимодействие в каким из веществ является качественной реакцией на этилен?
(1) с бромной водой;(2) с серной кислотой;(3) с гидроксидом натрия;(4) с соляной кислотой.
45. В трех пробирках находятся растворы хлорида натрия, бромида

натрия, иодида калия. Какое соединение из перечисленных необходимо

(2) $AgNO_3$ (3) H_2SO_4 (4) NH_4SCN

добавить к содержимому пробирок для распознавания этих веществ:

(1) KOH

- 46. Селективной аналитической реакцией называется:
- (1) реакция, дающая сходный аналитический сигнал лишь с ограниченным числом веществ;
- (2) реакция, дающая сходный аналитический сигнал со многими веществами;
- (3) реакция, позволяющая обнаружить лишь одно вещество в присутствии любых других веществ;
- (4) реакция, сопровождающаяся образованием осадка или газообразного вещества.
- 47. Образование ярко-желтого осадка является качественной реакцией иодида калия на ионы:
 - (1) Ba^{2+} (2) Fe^{3+} (3) Pb^{2+}
- (4) Cl⁻
- 48. Какая из приведенных реакций является специфической?
- (1) $Ba^{2+} + SO_4^{2-} = BaSO_4 \downarrow$
- (2) $NH_4^+ + OH^- = NH_3 \uparrow + H_2O$
- (3) $Fe^{3+} + 6SCN^{-} = [Fe(SCN)_{6}]^{3-}$
- $(4) \text{ Co}^{2+} + 6\text{SCN}^{-} = [\text{Co}(\text{SCN})_6]^{4-}$
- 49. Каким реагентом можно различить водные растворы HBr, NaF, KOH, AlCl₃?
 - (1) серной кислотой;
 - (2) раствором нитрата серебра;
 - (3) раствором гидроксида натрия;
 - (4) соляной кислотой.
 - **50**. Раствор хлорида меди (II) будет взаимодействовать:
 - (1) с раствором гидроксида калия;
 - (2) с соляной кислотой;
 - (3) с серной кислотой;
 - (4) с раствором нитрата бария.

2. КОЛИЧЕСТВЕННЫЙ АНАЛИЗ

- 1. Разновидностью процесса соосаждения не является:
- (1) окклюзия;
- (2) поверхностная адсорбция;
- (3) декантация;
- (4) изоморфное включение.
- 2. Декантацией называют:
- (1) процесс осаждения кристаллического осадка;
- (2) особый прием промывания осадка;
- (3) процесс соосаждения;
- (4) фильтрование осадка.
- 3. Для уменьшения потерь от растворимости осадка в гравиметрическом анализе обычно употребляют:
 - (1) 50 %-ный избыток осадителя;
 - (2) 5-кратный избыток осадителя;
 - (3) 50 %-ный недостаток осадителя;
 - (4) эквивалентное количество осадителя.
 - 4. «Солевым эффектом» называют:
- (1) понижение растворимости осадка при добавлении избытка осадителя;
- (2) повышение растворимости осадка при добавлении слишком большого избытка осадителя;
 - (3) адсорбцию ионов из раствора поверхностью осадка;
- (4) понижение концентрации осаждаемого иона в анализируемом растворе.
 - 5. Какой процесс не происходит при «старении» осадка?
 - (1) рост более крупных кристаллов за счет более мелких;
 - (2) совершенствование кристаллической структуры осадка;
 - (3) уменьшение количества захваченных осадком примесей;
 - (4) увеличение количества захваченных осадком примесей.

- 6. Прокаливание осадка обычно сопровождается:
- (1) улетучиванием осаждаемой формы;
- (2) увеличением массы осадка;
- (3) удалением летучих адсорбированных примесей;
- (4) поглощением углекислого газа из воздуха.
- 7. Выделению аморфного осадка способствует:
- (1) осаждение из концентрированного раствора концентрированным раствором осадителя;
- (2) осаждение из разбавленного раствора разбавленным раствором осадителя;
 - (3) медленное прибавление раствора-осадителя;
 - (4) незначительное относительное пересыщение раствора.
 - 8. Выделению кристаллического осадка способствует:
- (1) осаждение из концентрированного раствора концентрированным раствором осадителя;
- (2) медленное осаждение из разбавленного раствора разбавленным раствором осадителя при нагревании;
 - (3) осаждение в присутствии электролита-коагулянта;
- (4) значительное относительное пересыщение раствора в процессе осаждения.
 - 9. При «старении» осадок очищается, потому что:
 - (1) происходит уменьшение удельной поверхности осадка;
 - (2) происходит увеличение удельной поверхности осадка;
 - (3) происходит растворение части осадка;
 - (4) уменьшается растворимость осадка.
- **10**. Для растворения 1,16 г иодида свинца PbI_2 потребовалось 2 л воды. Произведение растворимости данной соли равно:
 - $(1) 4 \cdot 10^{-11};$
 - $(2) 8 \cdot 10^{-9};$
 - $(3) 4 \cdot 10^{-6}$;
 - $(4) 5 \cdot 10^{-10}$.

	14					
	11. В основе гравиметрического анализа лежит:					
комп	 (1) измерение объема раствора определяемого вещества; (2) измерение плотности определяемого вещества; (3) определение температуры кипения определяемого вещества; (4) взвешивание соединения известного состава для определяемого компонента. 					
лениі	12 . Что являе и бария?	тся осаждаемой ф	рормой при гра	виметрическом опреде-		
	(1) BaO	(2) Ba(OH) ₂	(3) BaSO ₄	(4) BaCl ₂		
отоя:	13. Гравиметрической формой при определении хлорид-ионов явля-					
ется:	$(1) AgNO_3$	(2) BaCl ₂	(3) AgCl	(4) HgCl ₂		
Mg_2P	14 . Гравиметрический фактор для определения MgO в виде осадка $Mg_2P_2O_7$ равен:					
	(1) 0,1811	(2) 0,3622	(3) 0,5844	(4) 0,3251		
15 . Гравиметрический фактор для определения CaO в виде осадк CaCO ₃ равен:						
	(1) 0,1811	(2) 0,3056	(3) 0,5603	(4) 0,3251		
	16. Молярная масса эквивалента соды в приведенной реакции равна:					
	$Na_2CO_3 + HCl = NaHCO_3 + NaCl$					
	(1) 53	(2) 106	(3) 36,5	(4) 73.		

17. Выражение «раствор с массовой долей NaCl 3 %» означает:

(1) в 100 г воды растворено 3 г соли;

- (2) в 1000 г воды растворено 3 г соли;
- (3) в 97 г воды растворено 3 г соли;
- (4) в 103 г воды растворено 3 г соли.
- 18. Число молей КОН в 250 мл 0,2 М раствора равно:
- (1) 0,05(2) 0,25(3) 0,50(4) 50,0

	19. Масса NaOH, содержащаяся в 500 мл 0,6 M раствора равна:				
	(1) 12 г	(2) 24 г	(3) 130 г	(4) 12 кг	
ли ст		концентрация ис иации равна 90 %	_	1 н. растворе HCl, ес-	
	(1) 1 моль/л	(2) 0,1 моль/л	(3) 0,9 моль/л	(4) 0,5 моль/л.	
	21. Чему равен	рН 0,01 М раство	ора азотной кис	лоты?	
	(1) 1	(2) 2	(3) 7	(4) 0,01	
	22. Чему равен	рН 0,001 М раст	вора КОН?		
	(1) 0,01	(2) 2	(3) 11	(4) 12	
pa Na		авные объемы 0,0 Н раствора после		HCl и 0,001 М раство- сало равно:	
	(1) 2	(2) 3	(3) 4	(4) 5	
соля		-	-	г 30 %-ного раствора ном растворе равна:	
	(1) 15 %	(2) 26 %	(3) 18 %	(4) 14 %	
тралі	25 . Объем 0,1 н. раствора гидроксида натрия, необходимый для нейтрализации 20 мл 0,15 н. раствора азотной кислоты равен:				
	(1) 45 мл	(2) 30 мл	(3) 15 мл	(4) 20 мл	
26 . Раствор гидроксида бария имеет pH = 12. Концентрация основания в растворе при 100 %-ной диссоциации равна в моль/л:					
	(1) 0,005	(2) 0,001	(3) 0,01	(4) 0,1	
лярн	27 . Плотность 20,8 %-ного раствора HNO $_3$ составляет 1,12 г/мл. Молярная концентрация кислоты в этом растворе равна:				
	(1) 5.6 моль/п	(2) 3.7 моль/л	(3) 7.4 моль/п	(4) 1.85 моль/л	

28 . Сколько граммов воды надо удалить путем выпаривания из 150 г 10 %-ного раствора карбоната натрия, чтобы получить 30 %-ный раствор этой соли?				
(1	1) 45	(2) 60	(3) 100	(4) 145,2
	-	ммов поваренно ы получить 30 %		бавить к 200 г 20 %-
(1	1) 20	(2) 28,6	(3) 30	(4) 50
3 (наиболі		приведенных с	оединений масс	овая доля кислорода
(1	1) P2O3	(2) N_2O_3	(3) Al ₂ O ₃	(4) Fe2O3
моль/л,		аствора составл		растворе равна 11,7 Гассовая доля серной
(1	1) 50 %	(2) 35,3 %	(3) 68,0 %	(4) 70,7 %
	_	воры какой пар пи нейтральную		одинаковую реакцию
,	1) NaCl, KNO ₃ 2) Na ₂ CO ₃ , FeCl		(3) Na ₂ SO ₄ , Cu(N (4) BaBr ₂ , AlBr ₃	$(O_3)_2$
	дных растворо			ненном при сливании ся 4 г NaOH, а в дру-
(2)	1) нейтральная; 2) щелочная; 3) кислая; 4) слабощелочн	ая.		
				аллогидрата хлорида иолекуле BaCl ₂ · <i>n</i> H ₂ O

(3) 6 (4) 8

(1) 4

(2) 2

35. Временная жесткость воды обусловлена присутствием в ней:
(1) $Ca(HCO_3)$, $Mg(HCO_3)_2$
(2) CaCO ₃ , MgCO ₃
(3) CaCl ₂ , MgCl ₂

- 36. Постоянная жесткость воды обусловлена присутствием в ней:
- (1) сульфатов и хлоридов натрия и калия;
- (2) сульфатов и хлоридов кальция и магния;
- (3) гидрокарбонатов кальция и магния;
- (4) карбонатов кальция и магния.
- 37. Вычисления результатов анализа в титриметрическом методе анализа основаны:
 - (1) на законе действующих масс;
 - (2) на законе сохранения массы;
 - (3) на законе эквивалентов;
 - (4) на законе Авогадро.

(4) Na₂SO₄, MgSO₄

- 38. Титром раствора исследуемого вещества называется:
- (1) количество моль эквивалентов растворенного вещества, содержащееся в 1 л раствора;
 - (2) число г вещества, содержащееся в 1 мл раствора;
 - (3) количество моль вещества в 1 л раствора;
 - (4) число г вещества, содержащееся в 1 л раствора.
- **39**. Какой объем 2 н. раствора H_2SO_4 потребуется для приготовления 500 мл 0,5 н. раствора этой кислоты?
 - (1) 250 мл (2) 125 мл (3) 500 мл (4) 100 мл
 - 40. Согласно теории Бренстеда Лоури основанием является:
 - (1) частица, способная присоединять протон;
 - (2) частица, способная отдавать протон;
 - (3) частица, способная отщеплять ион ОН⁻;
 - (4) частица, способная отдавать электронную пару.

- **41**. Для нейтрализации 30 мл 0,1 н. раствора щелочи потребовалось 12 мл раствора кислоты. Нормальность кислоты равна:
 - (1) 0.6 H. (2) 0.25 H. (3) 0.2 H. (4) 0.5 H.
- **42**. Комплексонометрией называют титриметрический метод анализа, который основан:
- (1) на применении в качестве реагентов-титрантов производных аминополикарбоновых кислот;
 - (2) на применении реакций нейтрализации;
 - (3) на применении окислительно-восстановительных реакций;
 - (4) на применении реакций осаждения.
- **43**. Соединение, имеющее название комплексон-III (трилон-Б), имеет формулу:

(1)
$$HOOCCH_2$$
— N — CH_2 — CH_2 — N — CH_2COOH
 I
 $HOOCCH_2$
 CH_2COOH

- $(2) N(CH_2COOH)_3$
- $(3) C_6H_5-NH-C_6H_5$

(4) NaOOCCH
$$_2$$
—N—CH $_2$ —CH $_2$ —N—CH $_2$ COONa | HOOCCH $_2$ CH $_2$ COOH

- **44**. Использование комплексона-III в титриметрическом методе анализа основано:
- (1) на способности данного реагента образовывать прочные комплексные соединения стехиометрического состава с катионами различных металлов;
 - (2) на кислотно-основных свойствах комплексона-III;
- (3) на способности данного реагента проявлять окислительно-восстановительные свойства;
- (4) на способности данного реагента образовывать малорастворимые соединения стехиометрического состава с катионами различных металлов.

19					
_	45 . Из перечисленных индикаторов для определения точки эквивалентности в комплексонометрическом титровании используют:				
(1) фенолфталеин;(2) метиловый оранжевый;(3) эриохром черный Т;(4) лакмус.					
46 . Приготовил трацию эквивалента 6	_	_	ю молярную концен- денной реакции?		
$5Fe^{2+} + MnO_4^- + 8H^+ = 5Fe^{3+} + Mn^{2+} + 4H_2O$					
(1) 0,02	(2) 0,1	(3) 0,2	(4) 1,0		
47. Эквивалент окислителя в приведенной реакции равен:					
$K_2Cr_2O_7 + 6KI + 7H_2SO_4 = Cr_2(SO_4)_3 + 3I_2 + 4K_2SO_4 + 7H_2O$					
(1) 1	$(2)^{1}/_{2}$	$(3)^{1}/_{3}$	$(4)^{1}/_{6}$		
48 . При восстановлении КМnO $_4$ в нейтральной среде образуется:					
(1) M. (OII)	(2) M ₂₂ O	(2) IC M., O	(4) M ₂₂ O		

- (1) $Mn(OH)_2$ (2) Mn_2O_3 (3) K_2MnO_4 (4) MnO_2
- **49**. Какой объем 0,25 н. КМпО₄ потребуется для окисления в кислой среде 50 мл 0,2 M NaNO₂ по реакции?

$$NaNO_2 + KMnO_4 + H_2SO_4 \rightarrow NaNO_3 + MnSO_4 + K_2SO_4 + H_2O$$

- (1) 40 мл
- (2) 80 мл
- (3) 120 мл (4) 29 мл
- 50. Редокс-индикатором называют вещество:
- (1) меняющее свою окраску при достижении титруемым раствором определенного значения рН;
- (2) меняющее свою окраску при достижении титруемым раствором определенного объема;
- (3) меняющее свою окраску при достижении титруемым раствором определенного окислительно-восстановительного потенциала;
- (4) образующее комплексное соединение с определяемым вещест-BOM.

ОТВЕТЫ

Качественный анализ		Количественный анализ	
1. 2	26 . 1	1. 3	26 . 1
2 . 2	27 . 3	2 . 2	27 . 2
3 . 3	28 . 1	3 . 1	28 . 3
4 . 3	29 . 1	4 . 2	29 . 2
5 . 2	30 . 1	5 . 4	30 . 2
6 . 3	31 . 2	6 . 3	31 . 4
7 . 4	32 . 2	7 . 1	32 . 1
8 . 1	33 . 3	8 . 2	33 . 3
9 . 3	34 . 1	9 . 1	34 . 2
10 . 1	35 . 1	10 . 2	35 . 1
11 . 2	36 . 2	11 . 4	36 . 2
12 . 1	37 . 3	12 . 3	37 . 3
13 . 1	38 . 3	13 . 3	38 . 2
14 . 3	39 . 1	14 . 2	39 . 2
15 . 1	40 . 2	15 . 3	40 . 1
16 . 4	41 . 4	16 . 2	41 . 2
17 . 2	42 . 4	17 . 3	42 . 1
18 . 3	43 . 2	18 . 1	43 . 4
19 . 1	44 . 1	19 . 1	44 . 1
20 . 3	45 . 2	20 . 3	45 . 3
21 . 3	46 . 1	21 . 2	46 . 2
22 . 4	47 . 3	22 . 3	47 . 4
23 . 2	48 . 2	23 . 2	48 . 4
24 . 1	49 . 2	24 . 2	49 . 2
25 . 3	50 . 1	25 . 2	50 . 3

Учебное издание

Олиференко Галина Львовна **Иванкин** Андрей Николаевич

ТЕСТЫ ПО АНАЛИТИЧЕСКОЙ ХИМИИ

Редакция авторов Компьютерный набор и верстка Г.Л. Олиференко

По тематическому плану внутривузовских изданий учебной литературы на $2016 \, \Gamma$., поз. доп.

Подписано в печать 2016. Формат 60×90 1/16. Бумага 80 г/м² Гарнитура «Таймс». Ризография. Усл. печ. л. 1,3. Тираж 200 экз. Заказ № ______.

Издательство Московского государственного университета леса. 141005, Мытищи-5, Московская обл., 1-я Институтская, 1, МГУЛ. E-mail: izdat@mgul. ac.ru