С.П. Тришин,

 А.А. Никитин
ТЕХНОЛОГИЯ ДРЕВЕСНЫХ ПЛИТ

Часть I
Лабораторные работы 1-3

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЛЕСА»
С. П. Тришин, А. А. Никитин

ТЕХНОЛОГИЯ ДРЕВЕСНЫХ ПЛИТ

Часть I
Лабораторные работы 1-3

Рекомендовано к изданию Редакционно-издательским советом университета в качестве учебно-методического пособия по дисциплинам «Технология древесноволокнистых плит», «Технология древесностружечных плит» для студентов, обучающихся по направлению подготовки бакалавров «Химическая технология», профиль подготовки «Химическая технология переработки древесины»

Москва

Издательство Московского государственного университета леса 2016

T69
Разработано в соответствии с Федеральным государственным образовательным стандартом ВО для направления подготовки бакалавров «Химическая технология»

Рецензенты: кандидат технических наук, доцент Д. В. Тулузаков, зав. кафедрой ТМ, МГУЛ;
кандидат технических наук, доцент А. А. Шевляков, доцент кафедры ПиА, МГУЛ

Работа подготовлена на кафедре технологии древесных плит и пластиков

Тришин, С. П.

Т69 Технология древесных плит. Часть I. Лабораторные работы 1-3 учеб.-методич. пособие / С. П. Тришин, А. А. Никитин. - М. ФГБОУ ВПО МГУЛ, 2016. - 23 с.

Лабораторный практикум предназначен для студентов дневного обучения проходящих обучение по направлению подготовки бакалавров «Химическая технология», профиль подготовки «Химическая технология переработки древесины».

УДК 674.8-41

Учебное издание

Тришин Сергей Петрович
Никитин Алексей Алексеевич

ТЕХНОЛОГИЯ ДРЕВЕСНЫХ ПЛИТ
 Часть I. Лабораторные работы 1-3

В авторской редакции
Компьютерный набор и верстка авторов
По тематическому плану внутривузовских изданий учебной и научной литературы на 2016 г .

Подписано в печать 18.01.2016. Формат $60 \times 901 / 16$. Бумага $80 \mathrm{r} / \mathrm{m}^{2}$. Ризография. Усл. печ. л. 1,5. Тираж 100 экз. Заказ № 4.
Издательство Московского государственного университета леса. 141005, Мытищи-5, Московская обл., 1 -я Институтская, 1, МГУЛ.

E-mail: izdat@mgul.ac.ru
По вопросам приобретения литературы издательства ФГБОУ ВПО МГУЛ обращаться в отдел реализации.
Телефон: (498) 687-41-33, E-mail: kurilkina@mgul.ac.ru
© С. П. Тришин, А. А. Никитин, 2016
© ФГБОУ ВПО МГУЛ, 2016

ВВЕДЕНИЕ

Древесина - основная продукция лесов, имеющая большое промышленное значение. Потребление древесины с каждым годом неуклонно растет. Комплексная переработка всего заготавливаемого древесного сырья, включая низкокачественную древесину, а также разнообразных отходов переработки древесины, позволит удовлетворить растущие потребности народного хозяйства без увеличения объема лесозаготовок, сберечь леса на значительных площадях.

Одно из направлений комплексного использования древесного сырья - производство древесных плитных материалов.

Древесноволокнистые (ДВП) и древесно-стружечные плиты (ДСтП) относятся к композиционным материалам. Древесные композиционные материалы широко используют в промышленном и гражданском строительстве, производстве мебели, машиностроении. Область их применения с каждым годом постоянно расширяется.

Целью выполнения лабораторных работ является закрепление студентами теоретических знаний в области технологии древесных композиционных материалов. В процессе выполнения лабораторных работ реализуется практическое овладение методами анализа свойств сырья и контроля качества изделий, а также приобретаются навыки научно- исследовательской работы.

Перед тем как приступить к выполнению работы, студенты обязаны ознакомиться с теоретическим материалом, разобраться в последовательности всех операций выполняемых в ходе работы.

Выполненные работы оформляются всеми студентами самостоятельно в виде отчета, который включает: характеристику используемых материалов, расчет потребности сырья и материалов, описание последовательности выполняемых операций, результаты измерений, их статистическую обработку.

Лабораторная работа считается сданной только тогда, когда, наряду с оформленным отчетом, студент ответил на контрольные вопросы.

Лабораторный практикум предназначен студентам, обучающимся по направлению подготовки «Химическая технология» по профилю подготовки «Химическая технология переработки древесины» при освоении учебных дисциплин: «Технология древесноволокнистых плит» и «Технология древесностружечных плит», а также студентам, обучающимся по направлению подготовки «Технология деревообработки» при освоении учебной дисциплины «Технология и оборудование древесных плит».

Лабораторный практикум разбит на части, каждая из которых содержит ряд тематических лабораторных работ. В первой части приведены лабораторные работы по определению основных показателей свойств сырья для изготовления плитных материалов.

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПОКАЗАТЕЛЕЙ СВОЙСТВ СЫРЬЯ

 ДЛЯ ИЗГОТОВЛЕНИЯ ПЛИТНЫХ МАТЕРИАЛОВ.Для производства древесных плит в качестве первичного сырья применяют низкокачественную древесину хвойных и лиственных пород, древесину от рубок ухода за лесом, отходы лесопильной и деревообрабатывающей промышленности - горбыли, рейки, обрезки досок, стружку, опилки, в том числе отходы фанерной промышленности - карандаши, шпон-рванину; лесосечные отходы - сучья, ветки.

Исходное сырье в виде круглой древесины и кусковых отходов перерабатывается на заготовки (чураки) либо на технологическую щепу.

Рекомендуемые размеры технологической щепы (ГОСТ 15815) в зависимости от назначения приведены в табл. 1 .

Таблииа 1

Назначение щепы	Длина, мм	Толщина, мм (не более)
1	2	3
Производство древесноволокнистых плит:	$10 \ldots 35$	5
- мокрым способом,	$10 \ldots 20$	5
- сухим способом	$10 \ldots 60$	30
Производство древесно-стружечных плит		

Основные виды древесных частии

В плитных древесных материалах основными видами частиц являются стружка и волокна.

Под древесными волокнами понимают отдельные клетки древесины, группы клеток и обрывки клеток. Размеры зависят от породного состава сырья и качества размола. Обычно длина $1,5 \ldots 5,0$ мм, толщина $0,01 \ldots$ 0,4 мм. Их получают главным образом термомеханическим методом размола.

Стружка, изготовленная специально для древесно-стружечных плит, имеет следующие размеры:

Стружка	Толщина, мм	Ширина, $м$ м	Длина, мм
Плоская	$0,15 \ldots 0,45$	до 12	до 40
Игольчатая	$0,15 \ldots 0,45$	до 5	до 40

Древесные частицы, получаемые в виде отходов деревообрабатывающих производств, характеризуются следующими размерами:

Древесные частицы	Толщина, мм	Ширина, мм	Длина, мм
Станочная стружка	$0,01 \ldots 1,45$	до 35	до 12
Опилки	$0,10 \ldots 2,05$	до 2,3	до 5
Пыль древесная технологическая	$0,01 \ldots 0,50$	до 1	до 1
Пыль щлифовальная	$0,01 \ldots 0,10$	до 1	до 1

Лабораторная работа №1. Оценка качества технологической ще-

 nыl
1.1. Определение массовой доли коры и гнили в щепе

Согласно ГОСТ 15815-83 берется щепа навеской $2,0 \ldots 2,5$ кг. Отобранная проба щепы взвешивается с погрешностью не более 52 .

Технические требования к щепе по содержанию в ней коры и гнили приведены в ГОСТ 15815-83.

При проведении испытаний из приготовленной навески выбирают частицы, полностью состоящие из коры или гнили, а также отделяют кору и гниль от частиц щепы с частичным их наличием.

Всю отобранную при этом кору и гниль взвешивают с погрешностью не более 1 z.

Массовую долю коры или гнили ($X, \%$) вычисляют по формуле (результаты вычислений округляют до первого десятичного знака):

$$
\begin{equation*}
X=\frac{m_{1}}{m} \times 100 \tag{1.1}
\end{equation*}
$$

где m_{1} - масса коры или гнили, 2 ;
m - масса навески с корой и гнилью, 2.
1.2. Определение массовой доли остатков на ситах анализатора (фракционного состава щепыт)

Одним из основных показателей качества щепы является ее фракционный состав. В соответствии с существующими методиками и ГОСТ 15815-83 фракционный состав щепы определяется в результате стратификации навески щепы на анализаторе гирационного типа АЛГ-М. В процессе анализа выделяют кондиционную, мелкую и крупную фракции.

Используемый для испытаний анализатор ситовый механический марки АЛГ-М (рис. 1.1) представляет собой набор контрольных сит с отверстиями диаметром $30,20,10,5$ мм и поддон. Кроме того, для осуществления процедуры анализа необходимы весы с погрешностью взвешивания не более 1 г.

Для испытания берется щепа, оставшаяся от навески после отбора коры и гнили. Перед работой в лабораторный анализатор устанавливаются сита сверху вниз со следующим диаметром отверстий:
a) $30 \mathrm{mм} ; 20 \mathrm{mм} ; 10 \mathrm{mм} ; 5 \mathrm{mм}$; поддон - для анализа щепы используемой в производстве древесноволокнистых плит (ДВП);
б) $50 \mathrm{mм} ; 30 \mathrm{mм} ; 10 \mathrm{~mm} ; 2$ мм; поддон - для анализа щепы используемой в производстве древесно-стружечных плит (ДСтП).

Анализ проводят в пять этапов:
1 - установка набора сит на подвижном основании анализатора;

2 - высыпание навески щепы (после отбора из нее коры и гнили высыпают на верхнее сито набора);

3 - затягивание набора сит стяжками, включение анализатора и сортировка навески в течение 1 мин.;

4 - взвешивание после полной остановки анализатора остатков на ситах с погрешностью не более 12 ;

5 - обработка результатов измерений.
При обработке результатов измерений массовую долю остатков на каждом сите (X_{l}, \%) вычисляют по формуле (результаты анализа округляют до первого десятичного знака):

$$
\begin{equation*}
X_{1}=\frac{m_{1}}{m} \times 100 \tag{1.2}
\end{equation*}
$$

где m_{1} - масса остатка на одном из сит, 2 ;
m - масса навески щепы без коры и гнили, 2.

Рис. 1.1. Схема механического анализатора АЛГ-М: 1 - корпус; 2 - эксцентриковый вал; 3 - коническая шестерня; 4 - опорный подшाитник; 5 - подвижное основание; 6 - стяжка; 7 - сита; 8 - реле времени; 9 - электропривод

1.3. Определение массовой доли хвойных и лиственньх пород в

 щепеДля определения содержания в щепе доли хвойных и лиственных пород используют комплект аппаратуры, инструментов и реактивов:

- весы с погрешностью взвешивания не более 1 г;
- секундомер по ГОСТ 5072-79;
- стакан фарфоровый или стеклянный вместимостью $500 \mathrm{~cm}^{3}$ по ГОСТ 1770-74;
- стакан из монель-металлической сетки или нержавеющей стали со сквозными отверстиями вместимостью $500 \mathrm{~cm}^{3}$;
- пинцет;
- бумага фильтровальная по ГОСТ 12026-76;
- кислота соляная по ГОСТ 3118-77;
- 12% - ный раствор калия марганцовокислого по ГОСТ 2049075;
- 1%-ный раствор аммиака по ГОСТ 3760-79.

Испытания щешы включают следующие этапы:

- после испытаний отбирают 100 г щепы, оставшейся на сите анализатора с отверстиями диаметром 10 мм;
- помещают щепу в стакан из монель-металлической сетки, который устанавливают в фарфоровом стакане и заливают 12% ным раствором марганцовокислого калия с таким расчетом, чтобы вся проба была покрыта раствором;
- через 2 мин. сетчатый стакан вынимают и промывают водой для удаления раствора;
- пробу в течение 2 мин. обрабатывают 12%-ным раствором соляной кислоты и снова промывают;
- щепу обрабатывают 1%-ным раствором аммиака в течение 1 мин. без промывки водой.
Обработанная таким образом щепа приобретает различный цвет: щепа лиственных пород - пурпурно-красную окраску; щепа хвойных пород желтую окраску.

После обработки щепу слегка отжимают фильтровальной бумагой, сортируют по цвету, взвешивают и обрабатывают полученные результаты (результаты вычислений округляют до первого десятичного знака).

Массовую долю щепы лиственных пород ($X_{2}, \%$) вычисляют по формуле:

$$
\begin{equation*}
X_{2}=\frac{m}{m+m_{1}} \times 100 \tag{1.3}
\end{equation*}
$$

где m - масса щепы лиственных пород, 2 ; m_{1} - масса щепы хвойных пород, z.

Массовую долю щепы хвойных пород ($X_{3}, \%$) вычисляют по формуле:

$$
\begin{equation*}
X_{3}=100-X_{2} \tag{1.4}
\end{equation*}
$$

1.4. Определение массовой доли минеральных примесей в щепе

Для определения массовой доли минеральных примесей в щепе используют:

- специальный прибор;
- весы с погрешностью взвешивания не более 0,01 г;
- воронку стеклянную по ГОСТ 25336-82;
- цилиндр мерный по ГОСТ 1770-74 вместимостью $100 \mathrm{~cm}^{3}$;
- стаканы химические по ГОСТ 25336-82 вместимостью 150 и $50 \mathrm{~cm}^{3}$;
- цинк хлористый по ГОСТ 4529-78 или насыщенный раствор любой соли плотностью $1,4-1,6 ~ z / \mathrm{cm}^{3}$;
- шкаф сушильный электрический, обеспечивающий температуру (100土5) ${ }^{\circ} \mathrm{C}$.

Прибор для определения минеральных примесей (рис. 1.2) включает две пластины из полированного стекла.

Щели между цилиндром, приемной воронкой и пластинами залиты парафином. Пластины плотно прижимают друг к другу болтом и гайкой через медные шайбы.

В верхней пластине при помощи битума закреплен стеклянный цилиндр с притертой пробкой, в нижней пластине установлена приемная воронка с краном.

Для улучшения скольжения верхней пластины по нижней пластине соприкасающиеся стороны пластин покрывают ланолином или другой аналогичной смазкой.

В нижней части имеется отверстие для слива суспензии из цилиндра. Слив осуществляется путем поворота верхней пластины вокруг болта до совмещения цилиндра с отверстием на нижней пластине.

Перед началом работы цилиндр должен быть совмещен с приемной воронкой.

Наличие минеральных примесей размером 3 мм и более в щепе определяют визуально. Из навески щепы выбирают и взвешивают минеральные примеси размером 3 мм и более.

Массовую долю минеральных примесей размером менее 3 лм определяют с помощью прибора.

Для этого 2 г высушенных до постоянной массы частиц щепы, прошедших через сито с отверстиями диаметром 5 мм, помещают в цилиндр прибора, куда предварительно заливают $70 \mathrm{~cm}^{3}$ раствора любой соли плотностью $1,4 \ldots 1,6 \mathrm{z} / \mathrm{cm}^{3}$.

Содержимое цилиндра перемешивают и дают отстояться суспензии. После отстаивания раствор с частицами щепы сливают в стакан через отверстие в нижней пластине.

Рис. 1.2. Прибор для определения минеральных примесей: 1 - цилиндр; 2 - верхняя подвижная пластина; 3 - нижняя неподвижная пластина; 4 - приемная воронка с резиновой трубкой; 5 - зажим; 6 - стойка; 7 - стакан для раствора с минеральными примесями; 8 - стакан для раствора с частицами щепы

Через воронку с резиновой трубкой в другой стакан сливают раствор с минеральными примесями. Минеральные примеси переносят в воронку с фильтром.

Фильтрат отбрасывают, а фильтр с минеральными примесями после промывки горячей водой сушат в сушильном шкафу при температуре (105 $\pm 5)^{\circ} \mathrm{C}$ до постоянной массы и взвешивают с погрешностью не более 0,01 г.

Массовую долю минеральных примесей ($X_{4}, \%$) вычисляют по формуле (результаты вычислений округляют до первого десятичного знака):

$$
X_{4}=\frac{100 \times\left(m_{1}+\frac{m_{2} \times m_{3}}{2}\right)}{m}
$$

где m - масса навески щепы, z;
m_{1} - масса частиц минеральных примесей размером более 3 мм;
m_{2} - масса минеральных примесей в 2 г остатка на поддоне;
m_{3} - масса остатка на поддоне.

1.5. Определение наличия в цепе мятьх кромок и угла среза

Щепа для производства древесноволокнистых плит должна быть без мятых кромок (мятыми кромками считают кромки, обмятые по всей ширине щепы), угол среза равен $30 \ldots 60 \%$.

Количество щепы, не соответствующей этим требованиям, не должно превышать 30% от объема партии.

Угол среза определяют с помощью шаблонов или измерительных инструментов (рис. 1.3).

1.3. Инструменты для измерения угла среза: а - ерунок;

б- деревянная малка; в - металлическая малка
В щепе для производства древесно-стружечных плит качество кромок и угол среза не учитывают.

Массовую долю щепы с мятыми кромками определяют следующим образом.

Из остатка на сите с отверстиями диаметром 20 мм при испытании щепы отбирают пробу массой 100 г и взвешивают с погрешностью не более 12 .

Визуально оценивают состояние кромок и производят разделение пробы на щепу с мятыми и немятыми кромками.

Массовую долю щепы с мятыми кромками ($X_{5}, \%$) вычисляют по формуле (результаты вычислений округляют до целого числа):

$$
\begin{equation*}
X_{5}=\frac{m_{1}}{m_{1}+m_{2}} \times 100 \tag{1.6}
\end{equation*}
$$

где m_{1} - масса щепы с мятыми кромками, z;
m_{2} - масса щепы без мятых кромок, 2 .

1.6. Определение геометрических размеров цепы

Геометрические размеры щепы определяют с помощью мерной линейки с точностью до 1 мм. Операция выполняется вручную. Древесные частицы выбираются из кондиционной фракции щепы.

Геометрические характеристики щепы и направления их измерения представлены на рис. 1.4.

Рис. 1.4. Геометрические характеристики щепы: \boldsymbol{l} - длина щепы; \boldsymbol{b} - ширина щепы;
\boldsymbol{s} - толщина щеть; $\boldsymbol{\alpha}$ - угол среза

Вопросы для самопроверки:

1. Как определяют массовую долю коры и гнили в шепе?
2. Какая последовательность определения фракиионного состава?
3. Как определяют массовую долю хвойньх и лиственньх пород в щene?
4. Как определяют массовую долю минеральньх примесей в щепе?
5. Какой инструмент используют для определения угла среза щепы?
6. Какие геометрические параметры имеет щепа марок ПВ, ПС?
7. Какая массовая доля минеральных примесей допускается в щепе марок $\Pi В, ~ П С$?

Лабораторная работа №2. Оценка качества древесной стружкки

2.1. Определение фракционного состава стружек

Сортирование стружки проводят в ситовом анализаторе (рис.1.1), имеющем набор из восьми круглых сит, пять из которых имеют круглые отверстия диаметром $10,7,5,3$ и 2 мм, остальные три сита имеют сетчатые ячейки размером $1,0 \times 1,0 ; 0,5 \times 0,5 ; 0,25 \times 0,25$ мм. В основании сит установлен поддон. Набор сит накрыт крышкой и закреплен на установочной площадке стяжными гайками.

Порядок выполнения работьы

Для испытаний берут пробу массой около 500 г, так как большее количество массы стружек затрудняет процесс рассева. Влажность взятой стружки не должна превышать 6%, что обеспечивает лучшее отделение мелочи и пыли. Навеска высыпается на верхнее сито анализатора.

Рекомендуемое время фракционирования одной навески обычной стружки составляет 5 мин. Увеличение времени фракционирования может вызвать чрезмерное измельчение стружек в приборе и искажение полученных результатов испытания.

По окончании рассева стружки сита разбираются, каждая фракция взвешивается на весах с точностью до $0,1 \quad$ 2. Количественное содержание фракций в навеске выражается в процентах к общей массе. Номер фракции

обозначается размерами сит, между которыми она была отобрана, например ($-110,7 / 3,5 / 3 \ldots$). Количество анализов для взятой пробы должно быть не менее трех. Окончательный результат вычисляется как среднеарифметический. Полученные данные сравниваются с показателями, установленными технологической инструкцией по производству древесностружечных плит.

Содержание отдельных фракций после ситового рассева определяют по формуле:

$$
\begin{equation*}
\Phi_{n}=M_{n} \times 100 / M, \tag{2.1}
\end{equation*}
$$

где M - масса стружек взятых для рассева, ,
M_{n} - масса стружек, находящаяся после рассева на n-м сите, г.
Значения Φ_{n}, определенные для каждой разделенной фракции, сводят в таблицу, характеризующую фракционный состав стружечной смеси. Сравнивая полученный результат со справочными значениями, определяют, на каких станках получена данная стружка, и на какую последующую операцию она должна быть отправлена.

2.2. Определение геометрической формы и размеров стружек

Отбирается проба, количество стружек в которой должно составлять 100 штук. В зависимости от геометрической формы стружку относят к той или иной группе: стружка, ширина которой в несколько раз больше толщины (плоская); стружка с шириной, близкой к толщине (игольчатая); стружка-отход, полученная при строгании или фрезеровании (скрученная); частицы стружки, имеющие примерно одинаковые размеры по длине, ширине и толщине (кубикообразные); мелочь и пыль.

Определение геометрических размеров стружек производится измерительными приборами с точностью: по длине - до 1,0 мм; по ширине - до 0,1 мм; по толщине $-0,01$ мм. Длина стружек замеряется вдоль направления волокон древесины.

Полученные данные подвергаются статистической обработке. Результаты определения среднего арифметического значения X, среднего квадратического отклонения S, дисперсии S^{2}, коэффициента вариации V и показателя точности P заносятся в табл. 2.1.

Таблича 2.1

№ фракции	X	S	S^{2}	V	P
-10					
$10 / 7$					
$7 / 5$					
$5 / 3$					
$3 / 2$					
$2 / 1$					
$1 / 0,5$					

Полученные данные сравниваются с показателями, установленными технологической инструкцией по производству дре-весно-стружечных плит (табл. 2.2).

Таблича 2.2
Фракционный состав древесных частиц в зависимости от типа оборудова-

Тип и модель стружечного станка, получаемая стружка		Содержание стружки, \%, во фракции						
	Сырье	-/10	10/7	$7 / 5$	5/3	$3 / 2$	2/1	1/0,5
	2	3	4	5	6	7	8	9
Стружечный станок с ножевым валом модель ДС-6, стружка плоская	Дровяная древесина, «карандаши»	-	23,1	25	30	17,1	2,8	0,8
Стружечный станок с ножевым валом модель ДС-8, стружка плоская	Дровяная древесина, «карандаши»	1	22,8	24,2	31,8	13,5	7,0	0,8
Стружечный станок центробежный модель ДС-7, игольчатая стружка	Технологическая щепа	12,2	20,1	25,6	30,2	7,8	4,0	0,1

Вопросы для самопроверки:

1. Что понимается под фракиионным составом древесных частич?
2. Какая последовательность определения фракционного стружки?
3. Чем отличаются плоские стружки от игольчатьих?
4. На каком оборудовании эти стружки получают?
5. Как определяются геометрические размеры частич?

Лабораторная работа №3. Оценка качества волокна

3.1. Определение степени размола на приборе Шоппер - Риглера

Прибор модели СР-2 (рис. 3.1) состоит из следующих основных частей: конического сосуда 3 (сепаратора), вставленного в него сверху приемного цилиндрического сосуда 6 с ситом 4 и конического клапана 5 с приводом. Прибор крепится на штативе, у которого опорная плита имеет четыре регулировочных винта. Конический клапан с прокладкой помещен в цилиндрический сосуд и может закрывать сетчатое отверстие, предотвра-

щая тем самым преждевременное вытекание воды или древесноволокнистой массы из приемного цилиндра. Конический сосуд (сепаратор) имеет две выпускные трубки: одну с боковым выходом, выступающую во внутрь конуса 2 и другую центральную 17 , расположенную по вертикальной оси сепаратора. Последняя снабжена втулкой с калиброванным отверстием 16. В коническом сосуде в середине конуса закреплен грибок, предохраняющий боковую трубку от прямого попадания воды.

Работа прибора основана на том, что обезвоживание массы с низкой степенью размола происходит быстро. При этом вода быстро заполняет нижний конус, и большее количество воды выливается через боковую трубку. При массе с высокой степенью размола обезвоживание идет медленно.
Правильность работы прибора устанавливается несколькими способами по так называемому «водяному эталону». Если прибор исправлен, то при истечении 1000 мл дистиллированной воды $960 \mathrm{~cm}^{3}$ пройдет через верхнее отверстие, а $40 \mathrm{~cm}^{3}$ - через нижнее. Время истечения воды с момента открытия клапана должно составлять 8 c. По другому способу при заполнении прибора 500 мл воды и закрытой боковой трубке при открывании клапана через нижнее отверстие за 1 мин вытекает 400 мл воды.

Порядок выполнения работы

Для измерения помола массы берут навеску древесно-волокнистой массы в количестве 2 г в пересчете на абсолютно сухое волокно.

Если концентрация волокнистой массы неизвестна, то берут пробу волокна методом «отжима массы», заключающемся в том, что массу отжимают рукой. Уплотненное таким образом влажное волокно имеет массу приблизительно в три раза большую, чем масса абсолютно сухого волокна, поэтому для испытаний такой волокнистой массы берут 62 .

Пробу помещают в емкость, заливают 200 мл воды и тщательно перемешивают, а затем добавляют воду 1000 мл и готовую суспензию переливают в цилиндрический сосуд прибора. Под боковую сливную трубку устанавливают отградуированную в градусах помола (${ }^{\circ}$ ШР) емкость.

Если емкость не градуирована в ${ }^{\circ} Ш Р$, то помол определяют по формуле

$$
\begin{equation*}
x=\frac{1000-q}{10} \tag{3.1}
\end{equation*}
$$

где q - количество воды, вытекающей через боковую трубку, мл; 10 - коэффициент перевода, ${ }^{\circ}$ ШР.
Полученный результат (при взятии пробы методов отжима массы) корректируют с учетом действительной массы пробы. Для этого осевшую на сите волокнистую массу переносят на бумажный фильтр, отжимают и

высушивают до постоянного веса. Затем с помощью диаграммы (рис. 3.2) вносят поправку в ранее полученный результат.

Рис. 3.1 Схема прибора СР-2: 1 - мерный цилиндр; 2 - боковая трубка;
3 - конический сосуд; 4 - сетка; 5 -конический клапан; 6 - цилиндрический сосуд; 7 - зубчатая рейка; 8 - маховичок; 9 - шестерня; 10 - рукоятка с упором; 11 - стойка;
12 - шнур; 13,14 - грузы; 15 - тройник; 16 -втулка с калиброванным отверстием;
17 - дентральная сливная трубка; 18 - стеклянный цилиндр
На диаграмме (рис. 3.2) по оси ординат - величины градуса помола, а по оси абсцисс - действительная масса пробы. Из точек, соответствующих полученным данным, проводят перпендикуляры до взаимного пересечения

в точке А. Если эта точка лежит на кривой, то нужно искать пересечение этой кривой с перпендикуляром, соответствующим значению 2 г абсолютно сухого волокна, то есть найти точку Б. В случае, если точка А попадает между кривыми, то из этой точки проводят линию, параллельную ближайшей кривой. По найденной точке Б на оси ординат находят действительное значение градуса помола. Например, получен помол $12{ }^{\circ} \mathrm{WP}$, масса высушенного волокна равна 2,6 2. Действительный градус помола будет равен 10° ШР. Степень размола на приборе Шоппер-Риглера определяется при строгом соблюдении температуры массы $18 \div 20^{\circ} \mathrm{C}$.

Следует иметь в виду, что прибор Шоппер-Риглера недостаточно чувствителен к изменению степени размола массы в диапазоне $8 \div 25^{\circ}$ ШР, соответствующему характеристике волокнистой массы, применяемой в производстве древесно-волокнистых плит.

Действительная масса пробы, г
Рис. 3.2 Диаграмма для корректировки градуса помола определяемого с использованием прибора СР-2

3.2. Определение степени размола на приборе Дефибратор-

 секундаПрибор Дефибратор-секунда (рис. 3.3) состоит из неподвижного нижнего цилиндрического бака, продолжением которого является верхний цилиндр 5, свободно перемещаемый по вертикали между двумя направляющими шинами 6 опорных стоек станины. Внутренний диаметр верхнего цилиндра равняется $21,5 \mathrm{~cm}$. На внутренней поверхности цилиндра нанесена риска, которая расположена выше основания цилиндра на 275 mm .

При заполнении цилиндра древесно-волокнистой массой с концентрацией 1,28 до этой отметки объем массы составляет 10 литров.

Между верхним цилиндром и нижним баком (сборником) расположена сетка, закрепленная в кольцевой рамке. Обычно применяется бронзовая сетка № 10. Рамка с сеткой снимается. Места соединения с цилиндрами уплотнены прокладками. Крепится цилиндр к сборнику пружинным зажимом 8. В сборник предусмотрен подвод воды. Вода подводится через вентиль и стеклянную трубку 15 . Вода из сборника отводится через стеклянную трубку и сифонную трубку 16 , на которой установлен спускной клапан. Клапан открывается нажатием на запорный крюк 14 .

Рис. 3.3 Схема прибора Дефибратор-секунда: 1 - станина; 2 - нижний бак;
3 -рамка с сеткой; 4 - опорное кольцо; 5 -верхний цилиндр; 6 - направляющие; 7 - запорная рукоятка; 8 - зажим; $9,10,11$ - система подвода воды; 12 - опорная плита; $13,14,16,17,18$ - запорные клапаны; 15 - стеклянная трубка с меткой

Расстояние между ситом и отверстием слива воды составляет 1 метр. На стеклянной трубке имеется указатель уровня 10 , по которому определяется момент опорожнения сборника.

Проверяется прибор путем залива в него воды через вентиль (при закрытом спускном клапане) до отметки в верхнем цилиндре. Затем вентиль закрывается, а спускной клапан открывается. Время истечения чистой воды должно составлять 10 c. Ход истечения проверяется по указателю уровня.

Порядок выполнения работы

Перед началом работы необходимо проверить чистоту прибора, особенно сетку. Далее верхний цилиндр опускается на рамку с сеткой, и его положение фиксируется зажимом. Отверстие трубки запирается спускным клапаном нажатием кнопки штока. Вентиль открывается, и вода заполняет сначала сифонную трубку 16 , затем нижний цилиндрический бак и поднимается через сетку 3 в верхний цилиндр. Прибор наполняется водой до уровня выше сетки на 5 мм. Древесно-волокнистая масса, содержащая 128 2. абсолютно сухого волокна, заливается в верхний цилиндр, перемешивается и разбавляется водой, чтобы уровень её достиг риски.

Доведя концентрацию в верхнем цилиндре до $1,28 \%$ и хорошо перемешав массу, открывают спускной клапан и одновременно включают секундомер. Как только последняя порция истекающей воды пересечет указатель уровня, секундомер выключается. Время истечения воды в секундах выражает степень размола волокна в единицах ДС. Например, 23 секунды соответствует 23 ДС.

После замера размола верхний цилиндр поднимается, и вытаскивается рамка с древесным волокном, осевшем на сетке. Волокно аккуратно отбирается, дополнительно отжимается в прессе и сушится при $(105 \pm 5){ }^{\circ} \mathrm{C}$ до постоянной массы. Корректировка результатов производится по диаграмме, приведенной на рис. 3.4. Например, масса образца оказалась равной $120 c$, а время обезвоживания $20 c$. Нужно найти точку пересечения перпендикуляров осей абсцисс и ординат. Через точку пересечения проводится воображаемая линия параллельно ближайшей наклонной до пересечения с перпендикуляром, соответствующим значению 128 г, а затем по полученной точке на оси ординат устанавливается действительное значение градуса помола. В данном примере он будет равен 21 ДС.

Перевод показателей степени размола по ДС в ${ }^{\circ} Ш Р$ может производиться по таблице 3.1.

Таблича 3.1

ДС	12	17	22	28	35	41,8	51	61	72	87	100
${ }^{\circ}$ ШР	9,6	10,6	11	12	13	14	15	16	17	18	20

100
90

110
$\begin{array}{lll}120 & 128 & 140\end{array}$
Действительная масса пробы, 2
Рис. 3.4 Диаграмма для корректировки градуса помола для прибора ДС

3.3. Определение степени размола на приборе ВНИИДрева

Прибор ВНИИДрева предназначен для определения степени размола сухого древесного волокна. Он состоит из следующих основных частей (рис. 3.5): рабочей трубки 1 , в которую засыпается древесное волокно; линии вакуумирования с ротаметром 3 , ресивера, вакуум-насоса 4 и жидкостного манометра 2. Металлическая рабочая трубка имеет обзорную прорезь. Внутрь металлической трубки вставлена стеклянная трубка, в основании которой закреплена сетка. Прибор основан на определении сопротивления волокна потоку проходящего через него воздуха.

Порядок выполнения работы

Берется навеска 5 г воздушно-сухого древесного волокна (влажностью $4 \ldots 5 \%$) Навеска высыпается в рабочую трубку, в которой создано, разрежение вакуум-насосом. Волокно в потоке воздуха, имеющего скорость до $1 \mathrm{~m} / \mathrm{c}$, достигает сетки и покрывает ее тонким слоем. Величина разрежения под слоем волокна определяет градус его помола, выраженный

в единицах ВНИИДрев. Жидкостный манометр имеет градуировку до 600 единиц (1 единица соответствует $9,8 \mathrm{H} / \boldsymbol{\text { м }}$ или 1 мм. вод. ст.). Продолжительность измерения $2 \ldots 5$ мин.

Диаграмма на рис. 3.6 позволяет сделать перевод показателей степени размола единиц ВНИИДрева в ДС.

Рис. 3.5 Схема прибора ВНИИДрев: 1 - рабочая трубка; 2 - жидкостной манометр; 3 - ротаметр; 4 - отсос воздуха

Рис. 3.6 Диаграмма для перевода значений степени размола из единиц ВНИИДрев в градус помола ДС

3.4. Определение геометрических размеров волокон

Прибор ДПВ-3 предназначен для проецирования с 20 -кратным увеличением древесных волокон с сухого препарата на экран для последующего измерения их длин. Проецирование производится отражением направленных лучей обычным зеркалом на экран. В конструкции аппарата используется обычный диапроектор «Свет».

На лицевой панели прибора установлены тумблеры включения прибора и переключения напряжений, а также прижимы для закрепления на экране листа бумаги размером 200×400 мм .

Препарат удерживается двумя пружинными зажимами, расположенными на выдвижной планке диапроектора. Прибор снабжен измерителем в виде авторучки, на конце которого установлено колесико с 48 зубьями при шаге 1 мм. Во впадины зубьев входит шарик, перемещающий диэлектрический толкатель. Последний совершает возвратно-поступательные движения, размыкая и замыкая пружинные контакты измерителя. Каждый полученный импульс регистрируется счетчиком и соответствует 1 мм.

Порядок выполнения работьь

Каплю исследуемой древесно-волокнистой массы наносят на препаратное стекло и высушивают. Из прибора выдвигают диапроектор, вынимают выдвижную планку и вставляют препаратное стекло высушенным препаратом наружу. Затем устанавливают планку на место и задвигают диапроектор до упора в прибор, на стекло экрана крепят тонкий лист белой бумаги. Включают проектор и производят его настройку, чтобы получить четкое изображение волокон на экране. Длина определяется измерителем.

Полученные замеры подлежат статистической обработке.

Вопросы для самопроверки:

1. Как определяют геометрические размеры волокон?
2. Какая последовательность определения степени размола на приборе ВНИИДрев?
3. Как определяют степень размола на приборе Дефибраторсекунда?
4. Как определяют степень размола на приборе Шоппер-Риглера?
5. Как корректируют значение градуса помола для прибора СР-2?
6. Как корректируют значение градуса помола для прибора ДС?

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1. Тришин С. П. Технология древесных плит: учеб. пособие. -3 -е изд. М.: ГОУ ВПО МГУЛ, 2007. - 188 с. : ил. 87
2. Волынский В. Н. Технология древесных плит и композиционных материалов: Учебно-справочное пособие. - СПб.: Издательство «Лань», 2010. - 336 с.
3. Баженов В. А., Карасёв Е. И., Мерсов Е. Д. Технология и оборудование производства древесных плит и пластиков: Учебник для техникумов. -2-е изд., перераб. и доп. - М.: Экология, 1992. - 416 с.
4. Справочник по производству древесностружечных плит/ И. А. Отлев, Ц. Б. Штейнберг, Л. С. Отлева, Ю. А. Бова, Н. И. Жуков, Г. И. Конаш. - 2-е изд. перераб. и доп. - М.: Лесная пром-ть, 1990. - 384 с.
5. Ребрин С. П., Мерсов Е. Д., Евдокимов В. Г. Технология древесноволокнистых плит. - 2-е изд., перераб. и доп. - М.: Лесная промышленность, 1982. - 272 с.
6. ГОСТ 15815-83 Щепа технологическая. Технические условия

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ
ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПОКАЗАТЕЛЕЙ СВОЙСТВ СЫРЬЯ ДЛЯ ИЗГОТОВЛЕНИЯ ПЛИТНЬХХ МАТЕРИАЛОВ
Лабораторная работа №1. Оценка качества технологической щепы
1.1. Определение массовой доли коры и гнили в щепе 5
1.2. Определение массовой доли остатков на ситах анализатора (фракционного состава щепы) \qquad
\qquad
\qquad
1.3. Определение массовой доли хвойных и лиственных пород в щепе
1.4. Определение массовой доли минеральных примесей в щепе 8
1.5. Определение наличия в щепе мятых кромок и угла среза 10
1.6. Определение геометрических размеров щепы 10

Лабораторная работа №2. Оценка качества древесной стружки ... 11
2.1. Определение фракционного состава стружек 11
2.2. Определение геометрической формы и размеров стружек 12

Лабораторная работа №3. Оценка качества волокна 13
3.1. Определение степени размола на приборе Шоппер - Риглера ... 13
3.2. Определение степени размола на приборе Дефибратор-секунда . 16
3.3. Определение степени размола на приборе ВНИИДрева 19
3.4. Определение геометрических размеров волокон

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ 22

